IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v11y2016i1p143.html
   My bibliography  Save this article

Estimation of Sugar Beet Yield and its Dry Matter Partitioning Under Different Irrigation and Nitrogen Levels

Author

Listed:
  • Hamidreza Kamali
  • Shahrokh Zand-Parsa

Abstract

In this study, a simple logistic model was developed for estimating total dry matter of sugar beet under different irrigation and nitrogen levels. The experiment was conducted using line source sprinkler irrigation in 2013 and furrow irrigation in 2014. Irrigation treatments were from 44% to 130% of full irrigation and applied nitrogen treatments ranged from 0 to 240 kg N ha-1. Results showed that the model was more accurate in predicting total dry matter at harvest date with the Normalized Root Mean Square Error (NRMSE) amounting to almost 10 percent. After total dry matter estimation, a model was needed for dry matter partitioning between different organs of sugar beet. To achieve this goal, another logistic model was developed and was compared with three revised models. Finally, white sugar content of root dry matter was estimated using a quadratic equation as a function of applied water and nitrogen. Validation results indicated that total and root dry matters, and white sugar yield were estimated fairly well. Results showed that excessive water had negative effects on total dry matter and root dry matter. Also, excessive nitrogen affected root dry matter negatively too, but even the excess had positive effects on total dry matter. In contrast to common belief, our results showed that drought stress reduced both ratios of root to leaf, and root to shoot dry matter.

Suggested Citation

  • Hamidreza Kamali & Shahrokh Zand-Parsa, 2017. "Estimation of Sugar Beet Yield and its Dry Matter Partitioning Under Different Irrigation and Nitrogen Levels," Modern Applied Science, Canadian Center of Science and Education, vol. 11(1), pages 143-143, September.
  • Handle: RePEc:ibn:masjnl:v:11:y:2016:i:1:p:143
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/60067/34546
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/60067
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gholamhoseini, M. & AghaAlikhani, M. & Modarres Sanavy, S.A.M. & Mirlatifi, S.M., 2013. "Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching," Agricultural Water Management, Elsevier, vol. 126(C), pages 9-18.
    2. Vandendriessche, H. J., 2000. "A model of growth and sugar accumulation of sugar beet for potential production conditions: SUBEMOpo I. Theory and model structure," Agricultural Systems, Elsevier, vol. 64(1), pages 1-19, April.
    3. Vandendriessche, H. J., 2000. "A model of growth and sugar accumulation of sugar beet for potential production conditions: SUBEMOpoII. Model performance," Agricultural Systems, Elsevier, vol. 64(1), pages 21-35, April.
    4. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2014. "Parametrization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass," Ecological Modelling, Elsevier, vol. 290(C), pages 11-20.
    5. Kiymaz, Sultan & Ertek, Ahmet, 2015. "Yield and quality of sugar beet (Beta vulgaris L.) at different water and nitrogen levels under the climatic conditions of Kırsehir, Turkey," Agricultural Water Management, Elsevier, vol. 158(C), pages 156-165.
    6. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    7. Stricevic, Ruzica & Cosic, Marija & Djurovic, Nevenka & Pejic, Borivoj & Maksimovic, Livija, 2011. "Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower," Agricultural Water Management, Elsevier, vol. 98(10), pages 1615-1621, August.
    8. Hassanli, Ali Morad & Ahmadirad, Shahram & Beecham, Simon, 2010. "Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(2), pages 357-362, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anar, Mohammad J. & Lin, Zhulu & Hoogenboom, Gerrit & Shelia, Vakhtang & Batchelor, William D. & Teboh, Jasper M. & Ostlie, Michael & Schatz, Blaine G. & Khan, Mohamed, 2019. "Modeling growth, development and yield of Sugarbeet using DSSAT," Agricultural Systems, Elsevier, vol. 169(C), pages 58-70.
    2. Zare Abyaneh, Hamid & Jovzi, Mehdi & Albaji, Mohammad, 2017. "Effect of regulated deficit irrigation, partial root drying and N-fertilizer levels on sugar beet crop (Beta vulgaris L.)," Agricultural Water Management, Elsevier, vol. 194(C), pages 13-23.
    3. Khaembah, E.N. & Brown, H.E. & Zyskowski, R. & Chakwizira, E. & de Ruiter, J.M. & Teixeira, E.I., 2017. "Development of a fodder beet potential yield model in the next generation APSIM," Agricultural Systems, Elsevier, vol. 158(C), pages 23-38.
    4. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    5. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    6. Haghverdi, Amir & Yonts, C. Dean & Reichert, David L. & Irmak, Suat, 2017. "Impact of irrigation, surface residue cover and plant population on sugarbeet growth and yield, irrigation water use efficiency and soil water dynamics," Agricultural Water Management, Elsevier, vol. 180(PA), pages 1-12.
    7. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    8. Tang, Darrell W.S. & Bartholomeus, Ruud P. & Ritsema, Coen J., 2024. "Wastewater irrigation beneath the water table: analytical model of crop contamination risks," Agricultural Water Management, Elsevier, vol. 298(C).
    9. Theodora Karanisa & Yasmine Achour & Ahmed Ouammi & Sami Sayadi, 2022. "Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar," Environment Systems and Decisions, Springer, vol. 42(4), pages 521-546, December.
    10. Mkhabela, Manasah S. & Bullock, Paul R., 2012. "Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in Western Canada," Agricultural Water Management, Elsevier, vol. 110(C), pages 16-24.
    11. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    13. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    14. Qi, Wei & Zhang, Zhanyu & Wang, Ce & Huang, Mingyi, 2021. "Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    15. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    16. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    17. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    18. Mondaca-Duarte, F.D. & van Mourik, S. & Balendonck, J. & Voogt, W. & Heinen, M. & van Henten, E.J., 2020. "Irrigation, crop stress and drainage reduction under uncertainty: A scenario study," Agricultural Water Management, Elsevier, vol. 230(C).
    19. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    20. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:11:y:2016:i:1:p:143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.