IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v5y2013i3p90.html
   My bibliography  Save this article

Modelling Soil Water Dynamics under Rainfed Agriculture to Mitigate Climate Change

Author

Listed:
  • Mukhtar Ahmed
  • Arvind H. Hirani
  • Muhammad Asif
  • Muhammad Sajad

Abstract

The model performance to simulate soil water dynamics was evaluated by comparing the predicted soil water content values with calculated soil water at different phenological stages of wheat and total soil available water using neutron probe. The pre-sowing soil water (mm) in this study varied from 40 to 50 mm in loam and sandy clay soil of Islamabad and Chakwal, respectively. When soil water is >50 mm, its effect on crop establishment is dependent on amount and temporal distribution of rainfall. Plant available soil water seems to be the most important factor if rainfall occurs between sowing and floral initiation period as happened during 2008-09 in the present study. The dynamics of soil water from emergence to maturity represented here as total soil water that remained maximum at earlier plant stages especially when crop roots were established and utilized soil water effectively that resulted in the lowest level of water at maturity which can be due to the evapotranspiration. The results depicted that the soil water distribution pattern mainly depends on soil properties and if sowing methodologies are resilient with available soil water then crop stand will be good and crop uses water much effectively. The results also depicted that when soil water is at drain upper limit (DUL) and the crop sown at proper time along with least soil evaporation, the soil water can be more easily taken up by the plant roots. Furthermore, the simulated soil water by the model was in close agreement with actual data. The validation skill scores like R2 confirmed the actuality of the model, therefore, dynamic model like Agricultural Production System Simulator (APSIM) could be used to describe the distribution of rainwater into different components like infiltration, runoff and drainage, and it can be used as a decision support tool for accurate management of different cultural operations for sustainable atmosphere-soil-plant (ASP) system.

Suggested Citation

  • Mukhtar Ahmed & Arvind H. Hirani & Muhammad Asif & Muhammad Sajad, 2013. "Modelling Soil Water Dynamics under Rainfed Agriculture to Mitigate Climate Change," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 5(3), pages 1-90, February.
  • Handle: RePEc:ibn:jasjnl:v:5:y:2013:i:3:p:90
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/22919/15485
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/22919
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    2. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    3. Unknown, 1997. "A New Soil Conservation Methodology and Application to Cropping Systems in Tropical Steeplands: A comparative synthesis of results obtained in ACIAR Project PN 9201," Technical Reports 113906, Australian Centre for International Agricultural Research.
    4. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    5. Cabelguenne, M. & Debaeke, P. & Bouniols, A., 1999. "EPICphase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: validation on maize, sunflower, sorghum, soybea," Agricultural Systems, Elsevier, vol. 60(3), pages 175-196, June.
    6. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    7. Jha, Pramod & Lakaria, Brij Lal & Vishwakarma, AK & Wanjari, RH & Mohanty, M & Sinha, Nishant K & Somasundaram, J & Dheri, GS & Dwivedi, AK & Sharma, Raj Paul & Singh, Muneshwar & Dalal, RC & Biswas, , 2021. "Modeling the organic carbon dynamics in long-term fertilizer experiments of India using the Rothamsted carbon model," Ecological Modelling, Elsevier, vol. 450(C).
    8. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    9. Kadigi, Ibrahim L. & Richardson, James W. & Mutabazi, Khamaldin D. & Philip, Damas & Mourice, Sixbert K. & Mbungu, Winfred & Bizimana, Jean-Claude & Sieber, Stefan, 2020. "The effect of nitrogen-fertilizer and optimal plant population on the profitability of maize plots in the Wami River sub-basin, Tanzania: A bio-economic simulation approach," Agricultural Systems, Elsevier, vol. 185(C).
    10. Gao, Ya & Sun, Chen & Ramos, Tiago B. & Huo, Zailin & Huang, Guanhua & Xu, Xu, 2023. "Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model," Ecological Modelling, Elsevier, vol. 475(C).
    11. Carberry, P. S. & Hochman, Z. & McCown, R. L. & Dalgliesh, N. P. & Foale, M. A. & Poulton, P. L. & Hargreaves, J. N. G. & Hargreaves, D. M. G. & Cawthray, S. & Hillcoat, N. & Robertson, M. J., 2002. "The FARMSCAPE approach to decision support: farmers', advisers', researchers' monitoring, simulation, communication and performance evaluation," Agricultural Systems, Elsevier, vol. 74(1), pages 141-177, October.
    12. Farquharson, Robert J. & Cacho, Oscar J. & Mullen, John D., 2005. "An economic approach to soil fertility management for wheat production in New South Wales and Queensland," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137866, Australian Agricultural and Resource Economics Society.
    13. Chauhan, Yashvir S., 2010. "Potential productivity and water requirements of maize-peanut rotations in Australian semi-arid tropical environments--A crop simulation study," Agricultural Water Management, Elsevier, vol. 97(3), pages 457-464, March.
    14. Yu, Qianan & Cui, Yuanlai, 2022. "Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation," Agricultural Water Management, Elsevier, vol. 271(C).
    15. Kingwell, Ross S., 2006. "Is Hanrahan sort of right? Will climate change ruin us all?," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 137961, Australian Agricultural and Resource Economics Society.
    16. Keating, B. A. & Meinke, H., 1998. "Assessing exceptional drought with a cropping systems simulator: a case study for grain production in northeast Australia," Agricultural Systems, Elsevier, vol. 57(3), pages 315-332, July.
    17. Brennan, Lisa E. & Lisson, Shaun N. & Inman-Bamber, N. Geoff & Linedale, Tony, 1999. "Most Profitable Use of Irrigation Supplies: A Case Study of A Bundaberg Cane Farm," 1999 Conference (43th), January 20-22, 1999, Christchurch, New Zealand 123787, Australian Agricultural and Resource Economics Society.
    18. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    19. Scott, J. Fiona, 2002. "Dominance Analysis of Crop Rotation Trials," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 125164, Australian Agricultural and Resource Economics Society.
    20. Mohammad Hajigholizadeh & Assefa M. Melesse & Hector R. Fuentes, 2018. "Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications," IJERPH, MDPI, vol. 15(3), pages 1-24, March.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:5:y:2013:i:3:p:90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.