IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v4y2012i3p237.html
   My bibliography  Save this article

Utilization of a Solar Greenhouse as a Solar Dryer for Drying Dates under the Climatic Conditions of the Eastern Province of Saudi Arabia

Author

Listed:
  • Emad Almuhanna

Abstract

The goal of this project was to evaluate the feasibility of using a solar greenhouse as a solar dryer for drying dates. We attempted to analyze the thermal performance and thermal balance of the solar greenhouse. An experimental gable-even span greenhouse (solar greenhouse) was installed at the experimental research station at King Faisal University (latitude 25.4ºN, longitude 49.6ºE, and altitude 142 m above sea level) and functioned during October 2010. We evaluated the thermal performance analysis of the solar greenhouse (active or dynamic system) based on the thermal balance equations. The obtained results revealed that the daily average solar energy available outside the solar dryers was 15.921 kWh, and 12.335 kWh was available inside the solar greenhouse for an average effective transmittance of 77.48%. Of the 12.335 kWh available inside the solar greenhouse, 7.414 kWh was converted into useful heat gain that could be used for the drying process, 3.947 kWh was lost by conduction and convection, and 0.686 kWh was lost by thermal radiation. The solar energy available inside the solar greenhouse produced a 14.1°C increase in the inside air temperatures versus the outside temperature (33.6°C) and reduced the relative humidity of the inside air versus the outside air (35.3%) by 9.6%. The daily average overall thermal efficiency of the solar greenhouse during the experimental period was 57.2%. Consequently, 42.8% of the solar energy available inside the solar greenhouse was lost. The predicted thermal balance for the solar greenhouse was well validated with that measured during the experimental period (r= 0.999) indicating an excellent agreement.

Suggested Citation

  • Emad Almuhanna, 2012. "Utilization of a Solar Greenhouse as a Solar Dryer for Drying Dates under the Climatic Conditions of the Eastern Province of Saudi Arabia," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(3), pages 237-237, January.
  • Handle: RePEc:ibn:jasjnl:v:4:y:2012:i:3:p:237
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/11772/9647
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/11772
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aboul-Enein, S. & El-Sebaii, A.A. & Ramadan, M.R.I. & El-Gohary, H.G., 2000. "Parametric study of a solar air heater with and without thermal storage for solar drying applications," Renewable Energy, Elsevier, vol. 21(3), pages 505-522.
    2. Bargach, M.N. & Tadili, R. & Dahman, A.S. & Boukallouch, M., 2000. "Survey of thermal performances of a solar system used for the heating of agricultural greenhouses in Morocco," Renewable Energy, Elsevier, vol. 20(4), pages 415-433.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    2. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & El-Gohary, H.G., 2002. "Empirical correlations for drying kinetics of some fruits and vegetables," Energy, Elsevier, vol. 27(9), pages 845-859.
    3. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    4. Bouadila, Salwa & Kooli, Sami & Skouri, Safa & Lazaar, Mariem & Farhat, Abdelhamid, 2014. "Improvement of the greenhouse climate using a solar air heater with latent storage energy," Energy, Elsevier, vol. 64(C), pages 663-672.
    5. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    6. Morad, M.M. & El-Shazly, M.A. & Wasfy, K.I. & El-Maghawry, Hend A.M., 2017. "Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants," Renewable Energy, Elsevier, vol. 101(C), pages 992-1004.
    7. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    8. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    9. Wang, Yang & Li, Heping & Ortega-Fernández, Iñigo & Huang, Xuefeng & Jiang, Bo & Bielsa, Daniel & Palomo, Elena, 2021. "The time-varying radiation applied in the temperature-sensitive reaction system stabilized with heat storage technology," Applied Energy, Elsevier, vol. 283(C).
    10. Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
    11. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    12. Ioan Aschilean & Gabriel Rasoi & Maria Simona Raboaca & Constantin Filote & Mihai Culcer, 2018. "Design and Concept of an Energy System Based on Renewable Sources for Greenhouse Sustainable Agriculture," Energies, MDPI, vol. 11(5), pages 1-12, May.
    13. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    14. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    15. Koyuncu, Turhan, 2006. "Performance of various design of solar air heaters for crop drying applications," Renewable Energy, Elsevier, vol. 31(7), pages 1073-1088.
    16. John Vourdoubas, 2016. "Possibilities of Using Renewable Energy Sources for Covering All the Energy Needs of Hydroponic Greenhouses. A Case Study in Crete, Greece," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 2(11), pages 107-112, 11-2016.
    17. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    18. Benjamin O. Ezurike & Muhammad Abid & Stephen A. Ajah & Chukwunenye A. Okoronkwo & Humphrey Adun & Udora N. Nwawelu & Olusola Bamisile & Juliana Hj Zaini, 2023. "Design and Numerical Energetic Analysis of a Novel Semi-Automated Biomass-Powered Multipurpose Dryer," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    19. Gilago, Mulatu C. & V.P., Chandramohan, 2022. "Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd," Energy, Elsevier, vol. 252(C).
    20. Singh, R.D. & Tiwari, G.N., 2010. "Energy conservation in the greenhouse system: A steady state analysis," Energy, Elsevier, vol. 35(6), pages 2367-2373.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:4:y:2012:i:3:p:237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.