IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v10y2018i2p23.html
   My bibliography  Save this article

The Characteristics of Five Food Production Systems and Their Implications for Sustainable Landscapes

Author

Listed:
  • Robert Burdock
  • Peter Ampt

Abstract

This paper presents a classification of agricultural production systems that we believe characterises the complex interface between agriculture and the landscapes in which they are managed. Farmers have a choice about how they will manage their land, either to exclude inherent environmental complexity or to engage with it, mindful of risks associated with their approach. Adding to this complexity is the interplay between key natural, social, human, physical and financial resources in agricultural systems, highlighting the importance of extending sustainability principles to aspects of ecology, economics and culture. Decisions about agricultural systems hinge on a balance of productive outcomes, on sensitivity to the issues of environmental complexity, on economic grounds including the access to resources, and the socio-cultural needs of the community in which the farmer participates. Further, farm managers will make a choice that both satisfies and suffices (satisfices) against production, ecological efficiencies and resilience outcomes when choosing which food production system to adopt. In this paper, these complexities are analysed against five different agricultural systems on an ecological continuum; from biologically simple industrial systems that minimise interaction with the natural environment, to ecologically complex systems that are closely engaged with their environment. Production viability is a necessary consideration to maintain farming operations but is not sufficient if operational capacity is to be achieved in the long term. This analysis finds that it is also necessary to work with ecological, economic and social complexities, satisficing against productivity, ecological efficiency and inherit system resilience. No one particular farming systems is appropriate in all cases. The farmer’s choice may apply a mix of the five different agricultural systems described, allowing for the blending of these attributes in order to sustain rural landscapes.

Suggested Citation

  • Robert Burdock & Peter Ampt, 2018. "The Characteristics of Five Food Production Systems and Their Implications for Sustainable Landscapes," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(2), pages 1-23, January.
  • Handle: RePEc:ibn:jasjnl:v:10:y:2018:i:2:p:23
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/71220/39978
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/71220
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cullather, Nick, 2010. "The Hungry World: America's Cold War Battle against Poverty in Asia," Economics Books, Harvard University Press, number 9780674725812, Spring.
    2. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    3. Dale, Virginia H. & Polasky, Stephen, 2007. "Measures of the effects of agricultural practices on ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 286-296, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    2. Liu, Wenjing & Wang, Jingsheng & Li, Chao & Chen, Baoxiong & Sun, Yufang, 2019. "Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research," Ecological Economics, Elsevier, vol. 156(C), pages 293-305.
    3. Stallman, Heidi R., 2011. "Ecosystem services in agriculture: Determining suitability for provision by collective management," Ecological Economics, Elsevier, vol. 71(C), pages 131-139.
    4. Lun, Yang & Jing, Sun & Moucheng, Liu & Qingwen, Min, 2021. "Agricultural production under rural tourism on the Qinghai-Tibet Plateau: From the perspective of smallholder farmers," Land Use Policy, Elsevier, vol. 103(C).
    5. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    6. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    7. Qingqing Yang & Yanhui Gao & Xinjun Yang & Jian Zhang, 2022. "Rural Transformation Driven by Households’ Adaptation to Climate, Policy, Market, and Urbanization: Perspectives from Livelihoods–Land Use on Chinese Loess Plateau," Agriculture, MDPI, vol. 12(8), pages 1-23, July.
    8. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    9. Rodríguez-Ortega, T. & Olaizola, A.M. & Bernués, A., 2018. "A novel management-based system of payments for ecosystem services for targeted agri-environmental policy," Ecosystem Services, Elsevier, vol. 34(PA), pages 74-84.
    10. Ashley E. Larsen & Steven D. Gaines & Olivier Deschênes, 2017. "Agricultural pesticide use and adverse birth outcomes in the San Joaquin Valley of California," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    11. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    12. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    13. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    14. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    15. Dörschner, T. & Musshoff, O., 2015. "How do incentive-based environmental policies affect environment protection initiatives of farmers? An experimental economic analysis using the example of species richness," Ecological Economics, Elsevier, vol. 114(C), pages 90-103.
    16. Karl S. Zimmerer & Steven J. Vanek, 2016. "Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change," Land, MDPI, vol. 5(2), pages 1-28, April.
    17. Wang, Haoluan & Swallow, Brent M., 2017. "Linking Agricultural Land Conservation and Provision of Ecosystem Services: A Choice Experiment Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258537, Agricultural and Applied Economics Association.
    18. Guangzi Li & Jun Cai, 2022. "Spatial and Temporal Differentiation of Mountain Ecosystem Service Trade-Offs and Synergies: A Case Study of Jieshi Mountain, China," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    19. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.
    20. Beardmore, Leslie & Heagney, Elizabeth & Sullivan, Caroline A., 2019. "Complementary land use in the Richmond River catchment: Evaluating economic and environmental benefits," Land Use Policy, Elsevier, vol. 87(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:2:p:23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.