IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v8y2019i4p1.html
   My bibliography  Save this article

Reinsurance Pricing of Large Motor Insurance Claims in Nigeria: An Extreme Value Analysis

Author

Listed:
  • Queensley C. Chukwudum

Abstract

Reinsurance is of utmost importance to insurers because it enables insurance companies cover risks that they, under normal circumstances, would not be able to cover on their own. An insurer needs to be able to evaluate his solvency probability and consequently, adjust his retention levels appropriately because the insurer’s retention level plays a vital role in determining the premiums he will pay to the reinsurer. To illustrate how Extreme Value theory can be applied, this study delves into modelling the probabilistic behaviour of the frequency and severity of large motor claims from the Nigerian insurance sector (2013-2016) using the Negative Binomial-Generalized Pareto distribution (NB-GPD). The annual loss distribution is simulated using the Monte Carlo method and it is used to predict the expected annual total claims and estimate the capital requirement for a year. Pricing of the Excess-of-loss (XL) reinsurance is also examined to aid insurers in optimizing their risk management decision in regards to the choice of their risk transfer position.

Suggested Citation

  • Queensley C. Chukwudum, 2019. "Reinsurance Pricing of Large Motor Insurance Claims in Nigeria: An Extreme Value Analysis," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(4), pages 1-12, July.
  • Handle: RePEc:ibn:ijspjl:v:8:y:2019:i:4:p:1
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/39750/40682
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/39750
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vytaras Brazauskas & Andreas Kleefeld, 2016. "Modeling Severity and Measuring Tail Risk of Norwegian Fire Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(1), pages 1-16, January.
    2. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reynkens, Tom & Verbelen, Roel & Beirlant, Jan & Antonio, Katrien, 2017. "Modelling censored losses using splicing: A global fit strategy with mixed Erlang and extreme value distributions," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 65-77.
    2. repec:ibn:ijspnl:v:8:y:2019:i:4:p:1 is not listed on IDEAS
    3. Queensley C Chukwudum, 2018. "Reinsurance Pricing of Large Motor Insurance Claims in Nigeria: An Extreme Value Analysis," Working Papers hal-01855973, HAL.
    4. Punzo, Antonio & Bagnato, Luca & Maruotti, Antonello, 2018. "Compound unimodal distributions for insurance losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 95-107.
    5. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    6. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    7. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    8. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    9. Goran Andjelic & Ivana Milosev & Vladimir Djakovic, 2010. "Extreme Value Theory In Emerging Markets," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 55(185), pages 63-106, April - J.
    10. Kittiya Chaithep & Songsak Sriboonchitta & Chukiat Chaiboonsri & Pathairat Pastpipatkul, 2012. "Value at Risk Analysis of Gold Price Returns Using Extreme Value Theory," The Empirical Econometrics and Quantitative Economics Letters, Faculty of Economics, Chiang Mai University, vol. 1(4), pages 151-168, December.
    11. Zhi-Fu Mi & Yi-Ming Wei & Bao-Jun Tang & Rong-Gang Cong & Hao Yu & Hong Cao & Dabo Guan, 2017. "Risk assessment of oil price from static and dynamic modelling approaches," Applied Economics, Taylor & Francis Journals, vol. 49(9), pages 929-939, February.
    12. Madhusudan Karmakar, 2013. "Estimation of tail‐related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 79-85, September.
    13. Miljkovic, Tatjana & Grün, Bettina, 2016. "Modeling loss data using mixtures of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 387-396.
    14. Weshah Razzak, "undated". "On the GCC Currency Union," API-Working Paper Series 0910, Arab Planning Institute - Kuwait, Information Center.
    15. Athanasios Sachlas & Takis Papaioannou, 2014. "Residual and Past Entropy in Actuarial Science and Survival Models," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 79-99, March.
    16. Dr. Ibrahim Onour, "undated". "The Global Financial Crisis and Equity Markets in Middle East Oil Exporting Countries," API-Working Paper Series 1009, Arab Planning Institute - Kuwait, Information Center.
    17. Yuguang Fan & Philip S. Griffin & Ross Maller & Alexander Szimayer & Tiandong Wang, 2017. "The Effects of Largest Claim and Excess of Loss Reinsurance on a Company’s Ruin Time and Valuation," Risks, MDPI, vol. 5(1), pages 1-27, January.
    18. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.
    19. Arthur Charpentier & Emmanuel Flachaire, 2021. "Pareto Models for Risk Management," Dynamic Modeling and Econometrics in Economics and Finance, in: Gilles Dufrénot & Takashi Matsuki (ed.), Recent Econometric Techniques for Macroeconomic and Financial Data, pages 355-387, Springer.
    20. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    21. Dey Ashim Kumar & Das Kumer Pial, 2020. "Predicting Federal Funds Rate Using Extreme Value Theory," Stochastics and Quality Control, De Gruyter, vol. 35(1), pages 1-15, June.

    More about this item

    Keywords

    extreme value theory; generalized Pareto distribution; risk management; XL reinsurance; negative binomial;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:8:y:2019:i:4:p:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.