IDEAS home Printed from https://ideas.repec.org/a/ibn/ijbmjn/v15y2021i6p98.html
   My bibliography  Save this article

An Empirical Analysis of the Relationship between Energy Consumption Structure and Environmental Pollution in Beijing

Author

Listed:
  • Yan Shigang
  • Deng Xin
  • Li Lexuan

Abstract

With the economic development and the increased energy consumption, challenges of environmental pollution control have been intensified in Beijing. To promote sustainable socioeconomic development, energy consumption restructure and the environment governance have become important issues of Beijing. Based on the grey correlation model, this paper analyzed the relationship between energy consumption structure and environmental pollution in Beijing. It is empirically shown that coal and oil consumption in Beijing’s energy consumption were highly correlated with environmental pollution, while natural gas consumption had the least impact on environmental pollution emissions. The findings of the study provided an empirical support to how to optimize the energy consumption structure and decrease the environment pollution.

Suggested Citation

  • Yan Shigang & Deng Xin & Li Lexuan, 2021. "An Empirical Analysis of the Relationship between Energy Consumption Structure and Environmental Pollution in Beijing," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(6), pages 1-98, July.
  • Handle: RePEc:ibn:ijbmjn:v:15:y:2021:i:6:p:98
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijbm/article/download/0/0/42754/44668
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijbm/article/view/0/42754
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yanjia & Gu, Alun & Zhang, Aling, 2011. "Recent development of energy supply and demand in China, and energy sector prospects through 2030," Energy Policy, Elsevier, vol. 39(11), pages 6745-6759.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Zeng & Lilin, Peng & Qiannan, Fan & Yingjie, Zhang, 2016. "Trans-regional electricity transmission in China: Status, issues and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 572-583.
    2. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    3. Valentine, Scott Victor, 2014. "The socio-political economy of electricity generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 416-429.
    4. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    5. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    6. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    7. Talha Yalta, A. & Cakar, Hatice, 2012. "Energy consumption and economic growth in China: A reconciliation," Energy Policy, Elsevier, vol. 41(C), pages 666-675.
    8. Mahumane, Gilberto & Mulder, Peter, 2016. "Introducing MOZLEAP: An integrated long-run scenario model of the emerging energy sector of Mozambique," Energy Economics, Elsevier, vol. 59(C), pages 275-289.
    9. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    10. Yuan, Jiahai & Xu, Yan & Hu, Zhaoguang, 2012. "Delivering power system transition in China," Energy Policy, Elsevier, vol. 50(C), pages 751-772.
    11. Shang, Delei & Geissler, Bernhard & Mew, Michael & Satalkina, Liliya & Zenk, Lukas & Tulsidas, Harikrishnan & Barker, Lee & El-Yahyaoui, Adil & Hussein, Ahmed & Taha, Mohamed & Zheng, Yanhua & Wang, M, 2021. "Unconventional uranium in China's phosphate rock: Review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Cao, Wensheng & Bluth, Christoph, 2013. "Challenges and countermeasures of China’s energy security," Energy Policy, Elsevier, vol. 53(C), pages 381-388.
    13. Yuan, Jiahai & Xu, Yan & Hu, Zhen & Yu, Zhongfu & Liu, Jiangyan & Hu, Zhaoguang & Xu, Ming, 2012. "Managing electric power system transition in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5660-5677.
    14. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    15. Feng Xu & Nan Xiang & Jingjing Yan & Lujun Chen & Peter Nijkamp & Yoshiro Higano, 2015. "Dynamic simulation of China’s carbon emission reduction potential by 2020," Letters in Spatial and Resource Sciences, Springer, vol. 8(1), pages 15-27, March.
    16. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    17. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    18. Zhao, Xin-Xin & Zheng, Mingbo & Fu, Qiang, 2022. "How natural disasters affect energy innovation? The perspective of environmental sustainability," Energy Economics, Elsevier, vol. 109(C).
    19. Reboredo, Juan C. & Wen, Xiaoqian, 2015. "Are China’s new energy stock prices driven by new energy policies?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 624-636.
    20. Yang, Yuying & Li, Jianping & Sun, Xiaolei & Chen, Jianming, 2014. "Measuring external oil supply risk: A modified diversification index with country risk and potential oil exports," Energy, Elsevier, vol. 68(C), pages 930-938.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijbmjn:v:15:y:2021:i:6:p:98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.