Latent Variable Models for Integrated Analysis of Credit and Point Usage History Data on Rewards Credit Card System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
- McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017.
"Beyond average energy consumption in the French residential housing market: A household classification approach,"
Energy Policy, Elsevier, vol. 107(C), pages 82-95.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386095, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-02475511, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-04141605, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," EconomiX Working Papers 2016-6, University of Paris Nanterre, EconomiX.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01586597, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386101, HAL.
- Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
- Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
- I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
- Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
- Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
- Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
- Fraisse, Henri & Laporte, Matthias, 2022. "Return on investment on artificial intelligence: The case of bank capital requirement," Journal of Banking & Finance, Elsevier, vol. 138(C).
- Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
- Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Nanbo Peng & Dongdong Wang & Zhixiang Huang, 2020. "The Causal Learning of Retail Delinquency," Papers 2012.09448, arXiv.org.
- Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
- Berge, Travis J., 2018.
"Understanding survey-based inflation expectations,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
- Travis J. Berge, 2017. "Understanding Survey Based Inflation Expectations," Finance and Economics Discussion Series 2017-046, Board of Governors of the Federal Reserve System (U.S.).
- Flood, Mark D. & Lemieux, Victoria L. & Varga, Margaret & William Wong, B.L., 2016.
"The application of visual analytics to financial stability monitoring,"
Journal of Financial Stability, Elsevier, vol. 27(C), pages 180-197.
- Mark D. Flood & Victoria L. Lemieux & Margaret Varga & B.L. William Wong, 2014. "The Application of Visual Analytics to Financial Stability Monitoring," Working Papers 14-02, Office of Financial Research, US Department of the Treasury, revised 07 Oct 2014.
- Danijel Bratina & Armand Faganel, 2023. "Using Supervised Machine Learning Methods for RFM Segmentation: A Casino Direct Marketing Communication Case," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 35(1), pages 7-22.
- Cristian KEVORCHIAN & Camelia GAVRILESCU & Gheorghe HURDUZEU, 2015. "An Approach Based On Big Data And Machine Learning For Optimizing The Management Of Agricultural Production Risks," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 12(2), pages 117-128.
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ibrjnl:v:13:y:2020:i:3:p:106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.