IDEAS home Printed from https://ideas.repec.org/a/ibf/riafin/v7y2014i7p55-73.html
   My bibliography  Save this article

Addition Of The Fuzzy Logic Model To Black-Scholes, For Pricing Mexican Currency Options, La Incorporacion De La Logica Difusa Al Modelo Black-Scholes, Para La Determinacion Del Precio De La Opcion Cambiaria Mexicana

Author

Listed:
  • Manuel Munoz Palma
  • Ezequiel Aviles Ochoa

Abstract

Since the introduction of uncertainty theory, a new paradigm in economics and finance has formed. This shift has included incorporation of new models that allow a greater degree of accuracy in modeling the reality of the environment of organizations based on fuzzy logic theory. This article emphasizes the importance of uncertainty present in the financial markets, which has provoked an increasing need for establishing models to determine its effect in pricing. Specifically we focus on futures and derivatives markets. A proposal is developed to determine the price of an exchange option applying triangular fuzzy numbers to exchange rate variables, to domestic interest rates, and foreign interest rates based on the classic Black-Scholes (B-S) model.

Suggested Citation

  • Manuel Munoz Palma & Ezequiel Aviles Ochoa, 2014. "Addition Of The Fuzzy Logic Model To Black-Scholes, For Pricing Mexican Currency Options, La Incorporacion De La Logica Difusa Al Modelo Black-Scholes, Para La Determinacion Del Precio De La Opcion Ca," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 7(7), pages 55-73.
  • Handle: RePEc:ibf:riafin:v:7:y:2014:i:7:p:55-73
    as

    Download full text from publisher

    File URL: http://www.theibfr2.com/RePEc/ibf/riafin/riaf-v7n7-2014/RIAF-V7N7-2014-4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1998. "Applications of Option-Pricing Theory: Twenty-Five Years Later," American Economic Review, American Economic Association, vol. 88(3), pages 323-349, June.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Hull, John & White, Alan, 1988. "The Use of the Control Variate Technique in Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 237-251, September.
    8. Samuelson, Paul A., 1967. "General Proof that Diversification Pays*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(1), pages 1-13, March.
    9. Scott, Elton & Tucker, Alan L., 1989. "Predicting currency return volatility," Journal of Banking & Finance, Elsevier, vol. 13(6), pages 839-851, December.
    10. Chang, Chuang-Chang, 2001. "Efficient procedures for the valuation and hedging of American currency options with stochastic interest rates," Journal of Multinational Financial Management, Elsevier, vol. 11(3), pages 241-268, July.
    11. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    12. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    13. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    2. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
    3. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    4. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    8. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    9. Vyacheslav Abramov & Fima Klebaner, 2007. "Estimation and Prediction of a Non-Constant Volatility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(1), pages 1-23, March.
    10. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    11. Dicle, Mehmet F. & Levendis, John, 2020. "Historic risk and implied volatility," Global Finance Journal, Elsevier, vol. 45(C).
    12. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    13. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    14. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    15. Jimmy E. Hilliard & Adam L. Schwartz & Alan L. Tucker, 1996. "Bivariate Binomial Options Pricing With Generalized Interest Rate Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 585-602, December.
    16. Huang, Yu Chuan & Chen, Shing Chun, 2002. "Warrants pricing: Stochastic volatility vs. Black-Scholes," Pacific-Basin Finance Journal, Elsevier, vol. 10(4), pages 393-409, September.
    17. Ncube, Mthuli, 1996. "Modelling implied volatility with OLS and panel data models," Journal of Banking & Finance, Elsevier, vol. 20(1), pages 71-84, January.
    18. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    19. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    20. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.

    More about this item

    Keywords

    Financial Risk; Fuzzy Numbers; Black-Scholes Model;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibf:riafin:v:7:y:2014:i:7:p:55-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mercedes Jalbert (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.