IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5093572.html
   My bibliography  Save this article

Analysis of Nonlinear Coupled Systems of Impulsive Fractional Differential Equations with Hadamard Derivatives

Author

Listed:
  • Usman Riaz
  • Akbar Zada
  • Zeeshan Ali
  • Manzoor Ahmad
  • Jiafa Xu
  • Zhengqing Fu

Abstract

This work is committed to establishing the assumptions essential for at least one and unique solution of a switched coupled system of impulsive fractional differential equations having derivative of Hadamard type. Using Krasnoselskii’s fixed point theorem, the existence, as well as uniqueness results, is obtained. Along with this, different kinds of Hyers–Ulam stability are discussed. For supporting the theory, example is provided.

Suggested Citation

  • Usman Riaz & Akbar Zada & Zeeshan Ali & Manzoor Ahmad & Jiafa Xu & Zhengqing Fu, 2019. "Analysis of Nonlinear Coupled Systems of Impulsive Fractional Differential Equations with Hadamard Derivatives," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-20, June.
  • Handle: RePEc:hin:jnlmpe:5093572
    DOI: 10.1155/2019/5093572
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/5093572.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/5093572.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5093572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akbar Zada & Shaheen Fatima & Zeeshan Ali & Jiafa Xu & Yujun Cui, 2019. "Stability Results for a Coupled System of Impulsive Fractional Differential Equations," Mathematics, MDPI, vol. 7(10), pages 1-29, October.
    2. Jiafa Xu & Jiqiang Jiang & Donal O’Regan, 2020. "Positive Solutions for a Class of p -Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems," Mathematics, MDPI, vol. 8(3), pages 1-13, February.
    3. Youzheng Ding & Jiafa Xu & Zhengqing Fu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems of Riemann–Liouville Type Involving Semipositone Nonlinearities," Mathematics, MDPI, vol. 7(10), pages 1-19, October.
    4. Usman Riaz & Akbar Zada & Zeeshan Ali & Ioan-Lucian Popa & Shahram Rezapour & Sina Etemad, 2021. "On a Riemann–Liouville Type Implicit Coupled System via Generalized Boundary Conditions," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    5. Alam, Mehboob & Shah, Dildar, 2021. "Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5093572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.