IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1428104.html
   My bibliography  Save this article

A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model

Author

Listed:
  • Lizhen Wu
  • Chun Kong
  • Xiaohong Hao
  • Wei Chen

Abstract

Short-term load forecasting (STLF) plays a very important role in improving the economy and stability of the power system operation. With the smart meters and smart sensors widely deployed in the power system, a large amount of data was generated but not fully utilized, these data are complex and diverse, and most of the STLF methods cannot well handle such a huge, complex, and diverse data. For better accuracy of STLF, a GRU-CNN hybrid neural network model which combines the gated recurrent unit (GRU) and convolutional neural networks (CNN) was proposed; the feature vector of time sequence data is extracted by the GRU module, and the feature vector of other high-dimensional data is extracted by the CNN module. The proposed model was tested in a real-world experiment, and the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the GRU-CNN model are the lowest among BPNN, GRU, and CNN forecasting methods; the proposed GRU-CNN model can more fully use data and achieve more accurate short-term load forecasting.

Suggested Citation

  • Lizhen Wu & Chun Kong & Xiaohong Hao & Wei Chen, 2020. "A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid Neural Network Model," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, March.
  • Handle: RePEc:hin:jnlmpe:1428104
    DOI: 10.1155/2020/1428104
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1428104.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/1428104.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/1428104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songjiang Li & Wenxin Zhang & Peng Wang, 2023. "TS2ARCformer: A Multi-Dimensional Time Series Forecasting Framework for Short-Term Load Prediction," Energies, MDPI, vol. 16(15), pages 1-22, August.
    2. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    3. Ejigu Tefera Habtemariam & Kula Kekeba & María Martínez-Ballesteros & Francisco Martínez-Álvarez, 2023. "A Bayesian Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia," Energies, MDPI, vol. 16(5), pages 1-22, February.
    4. Nasir Ayub & Usman Ali & Kainat Mustafa & Syed Muhammad Mohsin & Sheraz Aslam, 2022. "Predictive Data Analytics for Electricity Fraud Detection Using Tuned CNN Ensembler in Smart Grid," Forecasting, MDPI, vol. 4(4), pages 1-13, November.
    5. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    6. Wan, Anping & Chang, Qing & AL-Bukhaiti, Khalil & He, Jiabo, 2023. "Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism," Energy, Elsevier, vol. 282(C).
    7. Bibi Ibrahim & Luis Rabelo, 2021. "A Deep Learning Approach for Peak Load Forecasting: A Case Study on Panama," Energies, MDPI, vol. 14(11), pages 1-26, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1428104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.