IDEAS home Printed from https://ideas.repec.org/a/hin/jjopti/913467.html
   My bibliography  Save this article

Application of Fuzzy DEMATEL in Risks Evaluation of Knowledge-Based Networks

Author

Listed:
  • M. Abbasi
  • R. Hosnavi
  • B. Tabrizi

Abstract

Developing new products has received much attention within the last decades. This issue can be highlighted for strategic innovations, in particular. Recently, knowledge-based networks have been introduced in order to facilitate the affair of transforming knowledge into commercial products which can be regarded as a set of research centers, universities, knowledge intermediaries, customers, and so forth. However, there is a wide range of risk factors that are liable to affect the chain performance. Hence, this paper aims to consider the most influencing criteria that can play a more significant role in achievements of such networks. To do so, DEMATEL has been applied to take the relationships between the risk factors into account. Moreover, fuzzy set theory has been utilized in order to deal with the linguistic variables. Finally, the most important factors are identified and their relations are determined.

Suggested Citation

  • M. Abbasi & R. Hosnavi & B. Tabrizi, 2013. "Application of Fuzzy DEMATEL in Risks Evaluation of Knowledge-Based Networks," Journal of Optimization, Hindawi, vol. 2013, pages 1-7, December.
  • Handle: RePEc:hin:jjopti:913467
    DOI: 10.1155/2013/913467
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/7179/2013/913467.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/7179/2013/913467.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/913467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abbas A. Kurawarwala & Hirofumi Matsuo, 1996. "Forecasting and Inventory Management of Short Life-Cycle Products," Operations Research, INFORMS, vol. 44(1), pages 131-150, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Anil & Agrawal, Rohit & Wankhede, Vishal A & Sharma, Manu & Mulat-weldemeskel, Eyob, 2022. "A framework for assessing social acceptability of industry 4.0 technologies for the development of digital manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Merve Koçak Güngör & Bülent Bostancı & Neşe Yılmaz Bakır & Umut Doğan, 2022. "Investigation of Urban Design Approaches in Renewal Areas with Hybrid Decision Model," Sustainability, MDPI, vol. 14(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.
    2. Stefan N. Groesser & Niklas Jovy, 2016. "Business model analysis using computational modeling: a strategy tool for exploration and decision-making," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 27(1), pages 61-88, February.
    3. Haresh Gurnani & Christopher S. Tang, 1999. "Note: Optimal Ordering Decisions with Uncertain Cost and Demand Forecast Updating," Management Science, INFORMS, vol. 45(10), pages 1456-1462, October.
    4. Shen, Bin & Xu, Xiaoyan & Guo, Shu, 2019. "The impacts of logistics services on short life cycle products in a global supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 153-167.
    5. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    6. Shaochong Lin & Youhua (Frank) Chen & Yanzhi Li & Zuo‐Jun Max Shen, 2022. "Data‐Driven Newsvendor Problems Regularized by a Profit Risk Constraint," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1630-1644, April.
    7. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    8. Rachel Lacroix & Anna Timonina-Farkas & Ralf W. Seifert, 2023. "Utilizing additive manufacturing and mass customization under capacity constraints," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 281-301, January.
    9. Jackson, Ilya & Ivanov, Dmitry, 2023. "A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    10. Rossi, Roberto & Chen, Zhen & Tarim, S. Armagan, 2024. "On the stochastic inventory problem under order capacity constraints," European Journal of Operational Research, Elsevier, vol. 312(2), pages 541-555.
    11. John Maleyeff, 2014. "Quantifying the Value of Flexibility in Supply Chains for High-Risk Products," Journal of Management and Strategy, Journal of Management and Strategy, Sciedu Press, vol. 5(2), pages 16-24, May.
    12. Grzegorz Chodak, 2020. "The problem of shelf-warmers in electronic commerce: a proposed solution," Information Systems and e-Business Management, Springer, vol. 18(2), pages 259-280, June.
    13. Stephen C. Graves & Sean P. Willems, 2008. "Strategic Inventory Placement in Supply Chains: Nonstationary Demand," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 278-287, March.
    14. Meeran, Sheik & Jahanbin, Semco & Goodwin, Paul & Quariguasi Frota Neto, Joao, 2017. "When do changes in consumer preferences make forecasts from choice-based conjoint models unreliable?," European Journal of Operational Research, Elsevier, vol. 258(2), pages 512-524.
    15. Mostard, Julien & de Koster, Rene & Teunter, Ruud, 2005. "The distribution-free newsboy problem with resalable returns," International Journal of Production Economics, Elsevier, vol. 97(3), pages 329-342, September.
    16. Sunil Kumar & Jayashankar M. Swaminathan, 2003. "Diffusion of Innovations Under Supply Constraints," Operations Research, INFORMS, vol. 51(6), pages 866-879, December.
    17. Yang, Liu & Li, Haitao & Campbell, James F. & Sweeney, Donald C., 2017. "Integrated multi-period dynamic inventory classification and control," International Journal of Production Economics, Elsevier, vol. 189(C), pages 86-96.
    18. Jacob Goldenberg & Oded Lowengart & Daniel Shapira, 2009. "Zooming In: Self-Emergence of Movements in New Product Growth," Marketing Science, INFORMS, vol. 28(2), pages 274-292, 03-04.
    19. Zhiling Guo & Jianqing Chen, 2018. "Multigeneration Product Diffusion in the Presence of Strategic Consumers," Information Systems Research, INFORMS, vol. 29(1), pages 206-224, March.
    20. S. David Wu & Berrin Aytac & Rosemary T. Berger & Chris A. Armbruster, 2006. "Managing Short Life-Cycle Technology Products for Agere Systems," Interfaces, INFORMS, vol. 36(3), pages 234-247, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjopti:913467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.