IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/7510567.html
   My bibliography  Save this article

Herd Behavior and Financial Crashes: An Interacting Particle System Approach

Author

Listed:
  • Vincenzo Crescimanna
  • Luca Di Persio

Abstract

We provide an approach based on a modification of the Ising model to describe the dynamics of stock markets. Our model incorporates three different factors: imitation, the impact of external news, and private information; moreover, it is characterized by coupling coefficients, static in time, but not identical for each agent. By analogy with physical models, we consider the temperature parameter of the system, assuming that it evolves with memory of the past, hence considering how former news influences realized market returns. We show that a standard Ising potential assumption is not sufficient to reproduce the stylized facts characterizing financial markets; this is because it assigns low probabilities to rare events. Hence, we study a variation of the previous setting providing, also by concrete computations, new insights and improvements.

Suggested Citation

  • Vincenzo Crescimanna & Luca Di Persio, 2016. "Herd Behavior and Financial Crashes: An Interacting Particle System Approach," Journal of Mathematics, Hindawi, vol. 2016, pages 1-7, February.
  • Handle: RePEc:hin:jjmath:7510567
    DOI: 10.1155/2016/7510567
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JMATH/2016/7510567.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JMATH/2016/7510567.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/7510567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stauffer, Dietrich & Sornette, Didier, 1999. "Self-organized percolation model for stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 271(3), pages 496-506.
    2. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    3. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    4. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    5. Wyart, Matthieu & Bouchaud, Jean-Philippe, 2007. "Self-referential behaviour, overreaction and conventions in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 63(1), pages 1-24, May.
    6. W.-X. Zhou & D. Sornette, 2007. "Self-organizing Ising model of financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 175-181, January.
    7. Scharfstein, David S & Stein, Jeremy C, 1990. "Herd Behavior and Investment," American Economic Review, American Economic Association, vol. 80(3), pages 465-479, June.
    8. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    9. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    10. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    11. Kleinert, H. & Chen, X.J., 2007. "Boltzmann distribution and market temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 513-518.
    12. Anqi Pei & Jun Wang, 2013. "Nonlinear Analysis of Return Time Series Model by Oriented Percolation Dynamic System," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    2. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
    3. Yue Chen & Xiaojian Niu & Yan Zhang, 2019. "Exploring Contrarian Degree in the Trading Behavior of China's Stock Market," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    4. Zitis, Pavlos I. & Contoyiannis, Yiannis & Potirakis, Stelios M., 2022. "Critical dynamics related to a recent Bitcoin crash," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2023. "On the Connection between Temperature and Volatility in Ideal Agent Systems," Papers 2303.15164, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    3. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    4. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    6. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    7. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
    8. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    9. Biondi, Yuri & Giannoccolo, Pierpaolo & Galam, Serge, 2012. "Formation of share market prices under heterogeneous beliefs and common knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5532-5545.
    10. Raquel Almeida Ramos & Federico Bassi & Dany Lang, 2020. "Bet against the trend and cash in profits," CEPN Working Papers halshs-02956879, HAL.
    11. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    12. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    13. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    14. Christopher M Wray & Steven R Bishop, 2016. "A Financial Market Model Incorporating Herd Behaviour," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-28, March.
    15. Michel Beine & Agnès Bénassy-Quéré & Hélène Colas, 2003. "Imitation Amongst Exchange-Rate Forecasters: Evidence from Survey Data," THEMA Working Papers 2003-39, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    16. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.
    17. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    18. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    19. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    20. Makoto Nirei & John Stachurski & Tsutomu Watanabe, 2018. "Trade Clustering and Power Laws in Financial Markets (Published in Theoretical Economics, 15:1365?1398, 2020)," CARF F-Series CARF-F-450, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:7510567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.