IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7125037.html
   My bibliography  Save this article

Efficient Conical Area Differential Evolution with Biased Decomposition and Dual Populations for Constrained Optimization

Author

Listed:
  • Weiqin Ying
  • Bin Wu
  • Yu Wu
  • Yali Deng
  • Hainan Huang
  • Zhenyu Wang

Abstract

The constraint-handling methods using multiobjective techniques in evolutionary algorithms have drawn increasing attention from researchers. This paper proposes an efficient conical area differential evolution (CADE) algorithm, which employs biased decomposition and dual populations for constrained optimization by borrowing the idea of cone decomposition for multiobjective optimization. In this approach, a conical subpopulation and a feasible subpopulation are designed to search for the global feasible optimum, along the Pareto front and the feasible segment, respectively, in a cooperative way. In particular, the conical subpopulation aims to efficiently construct and utilize the Pareto front through a biased cone decomposition strategy and conical area indicator. Neighbors in the conical subpopulation are fully exploited to assist each other to find the global feasible optimum. Afterwards, the feasible subpopulation is ranked and updated according to a tolerance-based rule to heighten its diversity in the early stage of evolution. Experimental results on 24 benchmark test cases reveal that CADE is capable of resolving the constrained optimization problems more efficiently as well as producing solutions that are significantly competitive with other popular approaches.

Suggested Citation

  • Weiqin Ying & Bin Wu & Yu Wu & Yali Deng & Hainan Huang & Zhenyu Wang, 2019. "Efficient Conical Area Differential Evolution with Biased Decomposition and Dual Populations for Constrained Optimization," Complexity, Hindawi, vol. 2019, pages 1-18, February.
  • Handle: RePEc:hin:complx:7125037
    DOI: 10.1155/2019/7125037
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/7125037.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/7125037.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/7125037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shaopei Chen & Ji Yang & Yong Li & Jingfeng Yang, 2017. "Multiconstrained Network Intensive Vehicle Routing Adaptive Ant Colony Algorithm in the Context of Neural Network Analysis," Complexity, Hindawi, vol. 2017, pages 1-9, September.
    2. Francisco Prieto-Castrillo & Amin Shokri Gazafroudi & Javier Prieto & Juan Manuel Corchado, 2018. "An Ising Spin-Based Model to Explore Efficient Flexibility in Distributed Power Systems," Complexity, Hindawi, vol. 2018, pages 1-16, May.
    3. Rosshairy Abd. Rahman & Graham Kendall & Razamin Ramli & Zainoddin Jamari & Ku Ruhana Ku-Mahamud, 2017. "Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints," Complexity, Hindawi, vol. 2017, pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Al Eissa & Peng Chen & Paul B. Brown & Jen‐Yi Huang, 2022. "Effects of feed formula and farming system on the environmental performance of shrimp production chain from a life cycle perspective," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2006-2019, December.
    2. Amin Shokri Gazafroudi & Javier Prieto & Juan Manuel Corchado, 2019. "Virtual Organization Structure for Agent-Based Local Electricity Trading," Energies, MDPI, vol. 12(8), pages 1-11, April.
    3. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    4. Wen Jiang & Zeyu Ma & Xinyang Deng, 2019. "An attack-defense game based reliability analysis approach for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7125037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.