IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6090427.html
   My bibliography  Save this article

Performance Analysis for the Magnetically Coupled Resonant Wireless Energy Transmission System

Author

Listed:
  • Jinguo Liu
  • Xuebin Zhang
  • Jiahui Yu
  • Zhenyao Xu
  • Zhaojie Ju

Abstract

As a new wireless energy transmission technology, magnetically coupled resonant wireless energy transmission system (MCRETS) is not easily affected by obstacles in the transmission process, and the transmission distance is relatively far. However, how to balance the relationship between transmission efficiency and power to achieve optimal performance is still a huge challenge. In addition, few studies have theoretically investigated the factors affecting the wireless energy transmission system to obtain an optimal solution. Here, through unprecedented theoretical analysis, we find the exact parameters of system optimization and verify them by simulation and experiments. First, the optimal topology of MCRETS is obtained through theoretical analysis and comparison of topologies. Second, to improve the transmission performance of MCRETS, its impact factors, including transmission distance, resonant frequency, relay coil, and relative position of launch and receiving coils, are analyzed in detail to get accurate parameters. Furthermore, based on the analysis, we propose an unprecedented concept for balancing optimal efficiency and power, which is named the power product. Finally, the effectiveness of the proposed method is verified through analysis and experimental results. These findings shed light on the relationship between efficiency and power and provide a comprehensive theoretical basis for subsequent research.

Suggested Citation

  • Jinguo Liu & Xuebin Zhang & Jiahui Yu & Zhenyao Xu & Zhaojie Ju, 2019. "Performance Analysis for the Magnetically Coupled Resonant Wireless Energy Transmission System," Complexity, Hindawi, vol. 2019, pages 1-13, November.
  • Handle: RePEc:hin:complx:6090427
    DOI: 10.1155/2019/6090427
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6090427.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6090427.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6090427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.
    2. Yang Liu & Bin Li & Mo Huang & Zhijian Chen & Xiuyin Zhang, 2018. "An Overview of Regulation Topologies in Resonant Wireless Power Transfer Systems for Consumer Electronics or Bio-Implants," Energies, MDPI, vol. 11(7), pages 1-22, July.
    3. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    4. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    5. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    6. Zhen Zhang & Ruilin Tong & Zhenyan Liang & Chunhua Liu & Jiang Wang, 2018. "Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    7. Yujing Zhou & Chunhua Liu & Yongcan Huang, 2020. "Wireless Power Transfer for Implanted Medical Application: A Review," Energies, MDPI, vol. 13(11), pages 1-30, June.
    8. You-Chen Weng & Chih-Chiang Wu & Edward Yi Chang & Wei-Hua Chieng, 2021. "Minimum Power Input Control for Class-E Amplifier Using Depletion-Mode Gallium Nitride High Electron Mobility Transistor," Energies, MDPI, vol. 14(8), pages 1-16, April.
    9. Zbigniew Kaczmarczyk & Marcin Kasprzak & Adam Ruszczyk & Kacper Sowa & Piotr Zimoch & Krzysztof Przybyła & Kamil Kierepka, 2021. "Inductive Power Transfer Subsystem for Integrated Motor Drive," Energies, MDPI, vol. 14(5), pages 1-14, March.
    10. Yingqin Zeng & Conghui Lu & Cancan Rong & Xiong Tao & Xiaobo Liu & Renzhe Liu & Minghai Liu, 2021. "Analysis and Design of Asymmetric Mid-Range Wireless Power Transfer System with Metamaterials," Energies, MDPI, vol. 14(5), pages 1-10, March.
    11. Shaoteng Zhang & Jinbin Zhao & Yuebao Wu & Ling Mao & Jiongyuan Xu & Jiajun Chen, 2020. "Analysis and Implementation of Inverter Wide-Range Soft Switching in WPT System Based on Class E Inverter," Energies, MDPI, vol. 13(19), pages 1-15, October.
    12. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    13. Wei Chen & Jiaojiao Liang & Tingna Shi, 2018. "Speed Synchronous Control of Multiple Permanent Magnet Synchronous Motors Based on an Improved Cross-Coupling Structure," Energies, MDPI, vol. 11(2), pages 1-16, January.
    14. Xin Dai & Xiaofei Li & Yanling Li & Pengqi Deng & Chunsen Tang, 2017. "A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem," Energies, MDPI, vol. 10(10), pages 1-13, October.
    15. Salah Alatai & Mohamed Salem & Ibrahim Alhamrouni & Dahaman Ishak & Ali Bughneda & Mohamad Kamarol, 2022. "Design Methodology and Analysis of Five-Level LLC Resonant Converter for Battery Chargers," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    16. Tianqing Li & Xiangzhou Wang & Shuhua Zheng & Chunhua Liu, 2018. "An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    17. Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
    18. Xiaokun Li & Junwei Lu & Sascha Stegen, 2021. "Magnetic Coupler Optimization for Inductive Power Transfer System of Unmanned Aerial Vehicles," Energies, MDPI, vol. 14(21), pages 1-15, October.
    19. Lin Chen & Jianfeng Hong & Mingjie Guan & Zaifa Lin & Wenxiang Chen, 2019. "A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer," Energies, MDPI, vol. 12(18), pages 1-19, September.
    20. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6090427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.