IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1724125.html
   My bibliography  Save this article

A Network-Based Impact Measure for Propagated Losses in a Supply Chain Network Consisting of Resilient Components

Author

Listed:
  • Jesus Felix Bayta Valenzuela
  • Xiuju Fu
  • Gaoxi Xiao
  • Rick Siow Mong Goh

Abstract

The topology of a supply chain network affects the impacts of disruptions in it. We formulate a network-based measure of the impact of a disruption loss in a supply chain propagating downstream from an originating node. The measure takes into account the loss profile of the originating node, the structure of the supply network, and the resilience of the network components. We obtain an analytical expression for the impact measure under a beta-distributed initial loss (generalizable to any continuous distribution supported on the interval ), under a breakthrough scenario (in which a fraction of the initial production loss reaches a focal company downstream as opposed to containment upstream or at the originating point). Furthermore, we obtain a closed-form solution for a supply chain network with a -ary tree topology; a numerical study is performed for a scale-free network and a random network. Our proposed approach enables the evaluation of potential losses for a focal company considering its supply chain network structure, which may help the company to plan or redesign a robust and resilient network in response to different types of disruptions.

Suggested Citation

  • Jesus Felix Bayta Valenzuela & Xiuju Fu & Gaoxi Xiao & Rick Siow Mong Goh, 2018. "A Network-Based Impact Measure for Propagated Losses in a Supply Chain Network Consisting of Resilient Components," Complexity, Hindawi, vol. 2018, pages 1-13, February.
  • Handle: RePEc:hin:complx:1724125
    DOI: 10.1155/2018/1724125
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/1724125.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/1724125.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/1724125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vasco M Carvalho & Makoto Nirei & Yukiko U Saito & Alireza Tahbaz-Salehi, 2021. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(2), pages 1255-1321.
    2. ManMohan S. Sodhi & Christopher S. Tang, 2012. "Supply Chain Risk Management," International Series in Operations Research & Management Science, in: Managing Supply Chain Risk, edition 127, chapter 0, pages 3-11, Springer.
    3. Vasco M Carvalho & Makoto Nirei & Yukiko U Saito & Alireza Tahbaz-Salehi, 0. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake," The Quarterly Journal of Economics, Oxford University Press, vol. 136(2), pages 1255-1321.
    4. Chunlei Tang, 2021. "Introduction," Springer Books, in: Data Capital, chapter 0, pages 1-32, Springer.
    5. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    6. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.
    7. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    8. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    9. Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    12. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qun & Jia, Guozhu & Song, Wenyan, 2022. "Identifying critical factors in systems with interrelated components: A method considering heterogeneous influence and strength attenuation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 456-470.
    2. Wang, Qun & Jia, Guozhu & Jia, Yuning & Song, Wenyan, 2021. "A new approach for risk assessment of failure modes considering risk interaction and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şenay Ağca & John R. Birge & Zi'ang Wang & Jing Wu, 2023. "The impact of COVID‐19 on supply chain credit risk," Production and Operations Management, Production and Operations Management Society, vol. 32(12), pages 4088-4113, December.
    2. Zuhal Cilingir Uk & Cigdem Basfirinci & Amit Mitra, 2022. "Weighted Interpretive Structural Modeling for Supply Chain Risk Management: An Application to Logistics Service Providers in Turkey," Logistics, MDPI, vol. 6(3), pages 1-22, August.
    3. Qazi, Abroon & Dickson, Alex & Quigley, John & Gaudenzi, Barbara, 2018. "Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks," International Journal of Production Economics, Elsevier, vol. 196(C), pages 24-42.
    4. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    5. George Xianzhi Yuan & Huiqi Wang, 2019. "The general dynamic risk assessment for the enterprise by the hologram approach in financial technology," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-48, March.
    6. Baghersad, Milad & Zobel, Christopher W., 2021. "Assessing the extended impacts of supply chain disruptions on firms: An empirical study," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    8. Matthew Elliott & Benjamin Golub & Matthew V. Leduc, 2022. "Supply Network Formation and Fragility," American Economic Review, American Economic Association, vol. 112(8), pages 2701-2747, August.
    9. Shaowen Luo & Kwok Ping Tsang, 2020. "China And World Output Impact Of The Hubei Lockdown During The Coronavirus Outbreak," Contemporary Economic Policy, Western Economic Association International, vol. 38(4), pages 583-592, October.
    10. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    11. Sandro Luis Schlindwein & Ray Ison, 2020. "Confronting total systemic failure? The May 2018 truckers' strike in Brazil," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(1), pages 119-127, January.
    12. Durowoju, Olatunde A. & Chan, Hing Kai & Wang, Xiaojun & Akenroye, Temidayo, 2021. "Supply chain redesign implications to information disruption impact," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Zhu, Xiaoyan & Cao, Yunzhi, 2021. "The optimal recovery-fund based strategy for uncertain supply chain disruptions: A risk-averse two-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    14. Niels Bugert & Rainer Lasch, 2023. "Analyzing upstream and downstream risk propagation in supply networks by combining Agent-based Modeling and Bayesian networks," Journal of Business Economics, Springer, vol. 93(5), pages 859-889, July.
    15. Didier Wernli & Lucas Böttcher & Flore Vanackere & Yuliya Kaspiarovich & Maria Masood & Nicolas Levrat, 2023. "Understanding and governing global systemic crises in the 21st century: A complexity perspective," Global Policy, London School of Economics and Political Science, vol. 14(2), pages 207-228, May.
    16. David Rezza Baqaee, 2018. "Cascading Failures in Production Networks," Econometrica, Econometric Society, vol. 86(5), pages 1819-1838, September.
    17. Soumyatanu Mukherjee & Sidhartha S. Padhi, 2022. "Sourcing decision under interconnected risks: an application of mean–variance preferences approach," Annals of Operations Research, Springer, vol. 313(2), pages 1243-1268, June.
    18. Kraude, Richard & Narayanan, Sriram & Talluri, Srinivas, 2022. "Evaluating the performance of supply chain risk mitigation strategies using network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1168-1182.
    19. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    20. Carlo Piccardi & Lucia Tajoli, 2018. "Complexity, centralization, and fragility in economic networks," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-13, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1724125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.