IDEAS home Printed from https://ideas.repec.org/a/hde/epregl/v69y2018i3p269-297.html
   My bibliography  Save this article

Internal Model For Ifrs 9 - Expected Credit Losses Calculation

Author

Listed:
  • Hrvoje Volarević

    (Zagreb School of Economics and Management)

  • Mario Varović

    (Zagreb School of Economics and Management)

Abstract

This article explores and analyzes the implementation problem of International Financial Reporting Standard 9 (IFRS 9) which is in use from 1 January 2018. IFRS 9 is most relevant for financial institutions, but also for all business subjects with a significant share of financial assets in their Balance sheet. The main objective of this article is the implementation of new impairment model for financial instruments, which is measurable through Expected Credit Losses (ECL). The use of this model is in correlation with a credit risk of the company for which it is necessary to determine basic variables of the model: Exposure at Default (EAD), Loss Given Default (LGD) and Probability of Default (PD). Basel legislation could be used for LGD calculation while PD calculation is based on specific methodology with two different solutions. In the first option, PD is taken as an external data from reliable rating agencies. When there is no external rating, an internal model for PD calculation has to be create. In order to develop an internal model, authors of this article propose application of multi-criteria decision-making model based on Analytic Hierarchy Process (AHP) method. Input data in the model are based on information from financial statements while MS Excel is used for calculation of such multi-criteria problem. Results of internal model are mathematically related with PD values for each analyzed company. Simple implementation of this internal model is an advantage compared to other much more complicated models.

Suggested Citation

  • Hrvoje Volarević & Mario Varović, 2018. "Internal Model For Ifrs 9 - Expected Credit Losses Calculation," Ekonomski pregled, Hrvatsko društvo ekonomista (Croatian Society of Economists), vol. 69(3), pages 269-297.
  • Handle: RePEc:hde:epregl:v:69:y:2018:i:3:p:269-297
    as

    Download full text from publisher

    File URL: https://hrcak.srce.hr/202518
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    3. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    4. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    5. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    6. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    7. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    8. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    9. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    10. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    11. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    12. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    13. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    14. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    15. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    16. Sadiq Ullah & Mudassar Iqbal & Muhammad Waseem & Adnan Abbas & Muhammad Masood & Ghulam Nabi & Muhammad Atiq Ur Rehman Tariq & Muhammad Sadam, 2024. "Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    17. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    18. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    20. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.

    More about this item

    Keywords

    IFRS 9; Expected Credit Losses (ECL); Exposure at Default (EAD); Loss Given Default (LGD); Probability of Default (PD); Analytic Hierarchy Process (AHP); internal model;
    All these keywords.

    JEL classification:

    • M40 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - General
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hde:epregl:v:69:y:2018:i:3:p:269-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Josip Tica (email available below). General contact details of provider: https://edirc.repec.org/data/hdeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.