IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v4y2023i2p17-258d1126884.html
   My bibliography  Save this article

Energy Use Patterns of Pearl Millet ( Pennisetumglaucum (L.)) Production in Haryana, India

Author

Listed:
  • Raveena Kargwal

    (Department of Renewable and Bio-Energy Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India)

  • Yadvika

    (Department of Renewable and Bio-Energy Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India)

  • Vijay Kumar Singh

    (Department of Processing and Food Engineering, Mahamaya College of Agricultural Engineering & Technology, Ambedkarnagar, (ANDUAT, Ayodhya), Akbarpur 224122, India)

  • Anil Kumar

    (Department of Mechanical Engineering, Delhi Technological University, Delhi 110042, India
    Centre for Energy and Environment, Delhi Technological University, Delhi 110042, India)

Abstract

Pearl millet ( Pennisetumglaucum (L.)) is the fifth most important cereal crop in the world after rice, wheat, maize and sorghum. A resolution adopted by the UN General Assembly on 3 March 2021 decided to declare 2023 as the International Year of Millets. Millet has been promoted due to its nutritional value and low irrigation requirement. In this study, pearl millet was selected for energy auditing, and its production amount is a direct function of energy input. The production of pearl millet needs to be augmented to fulfill an increasing demand. Pearl millet is produced using various sources of energy. This study was conducted to examine the energy use pattern of different categories of farmers, such as small, medium and large, for pearl millet production in Hisar district, Haryana, India. The energy was distributed in different operations, including preparatory tillage, sowing, interculture, fertilizer, irrigation, pesticide, harvesting, threshing and transportation. The source-wise energy (direct and indirect) and operation-wise energy consumption were calculated for all categories of farmers. The average energy input of small, medium and large farmers was 2849.09 MJ.ha −1 , 3027.21 MJ.ha −1 and 4021.50 MJ.ha −1 , respectively. The highest energy was consumed in fertilizer application (52%), with the lowest in seed (2%). The energy ratios of small, medium and large farmers were 3.92, 9.40 and 13.80, respectively. This study could improve the agricultural production systems of pearl millet regarding the energy values of the inputs and outputs.

Suggested Citation

  • Raveena Kargwal & Yadvika & Vijay Kumar Singh & Anil Kumar, 2023. "Energy Use Patterns of Pearl Millet ( Pennisetumglaucum (L.)) Production in Haryana, India," World, MDPI, vol. 4(2), pages 1-18, April.
  • Handle: RePEc:gam:jworld:v:4:y:2023:i:2:p:17-258:d:1126884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/4/2/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/4/2/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamedani, Sara Rajabi & Shabani, Zeinab & Rafiee, Shahin, 2011. "Energy inputs and crop yield relationship in potato production in Hamadan province of Iran," Energy, Elsevier, vol. 36(5), pages 2367-2371.
    2. Wongnaa, C.A. & Ofori, D., 2012. "Resource-use Efficiency in Cashew Production in Wenchi Municipality, Ghana," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 4(2), pages 1-8, June.
    3. Kariyaiah Basavalingaiah & Y. M. Ramesha & Venkatesh Paramesh & G. A. Rajanna & Shankar Lal Jat & Shiva Dhar Misra & Ashok Kumar Gaddi & H. C. Girisha & G. S. Yogesh & S. Raveesha & T. K. Roopa & K. S, 2020. "Energy Budgeting, Data Envelopment Analysis and Greenhouse Gas Emission from Rice Production System: A Case Study from Puddled Transplanted Rice and Direct-Seeded Rice System of Karnataka, India," Sustainability, MDPI, vol. 12(16), pages 1-24, August.
    4. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    5. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    6. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    2. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    3. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    4. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    5. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    6. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    7. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    8. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    9. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.
    10. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Rajaeifar, Mohammad Ali, 2014. "Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran," Agricultural Systems, Elsevier, vol. 123(C), pages 120-127.
    11. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    12. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    13. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    14. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    15. Mohammadshirazi, Ahmad & Akram, Asadolah & Rafiee, Shahin & Mousavi Avval, Seyyed Hashem & Bagheri Kalhor, Elnaz, 2012. "An analysis of energy use and relation between energy inputs and yield in tangerine production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4515-4521.
    16. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    17. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    18. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    19. Castoldi, Nicola & Bechini, Luca & Ferrante, Antonio, 2011. "Fossil energy usage for the production of baby leaves," Energy, Elsevier, vol. 36(1), pages 86-93.
    20. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:4:y:2023:i:2:p:17-258:d:1126884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.