IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p605-d95701.html
   My bibliography  Save this article

Life and Death of Industrial Ecosystems

Author

Listed:
  • Weslynne S. Ashton

    (Stuart School of Business, Illinois Institute of Technology, 10 West 35th Street, Chicago, IL 60616, USA)

  • Shauhrat S. Chopra

    (Institute for Environmental Science and Policy, University of Illinois at Chicago, 2121 West Taylor Street (MC 673), Chicago, IL 60612-4224, USA)

  • And Rahul Kashyap

    (Department of Physics, University of Buffalo, Fronczak Hall, Buffalo, NY 14260-1500, USA)

Abstract

Self-organized industrial ecosystems (SOIEs) refer to communities of firms in diverse industries that spontaneously engage in Industrial Symbiosis (IS); that is, firms independently develop bilateral and multi-lateral interactions involving material, energy, and knowledge sharing for individual and collective benefit. Like biological ecosystems, self-organized industrial ecosystems must constantly respond to external perturbations. Resilience of SOIEs, or the ability of systems to maintain structure and function in response to perturbations, has been the focus of a few recent studies. However, these studies have only examined the network characteristics for resilience of IS in a static manner. The current study contributes to this emerging literature by examining the dynamics associated with growth (life) and demise (death) of self-organized industrial ecosystems in light of changing network dynamics and external perturbations, with emphasis on material and socio-economic aspects of connectivity between firms. This research is grounded in real world cases, but expands beyond these through hypothetical network models in order to ascertain the network characteristics that lead to more resilient structures and outcomes. A key distinction is made between SOIEs that include an anchor firm versus scavenger firms. The former typically involve a scale-free network structure where new member firms preferentially connect to actors with the most connections, while the latter involve more random, fully-connected networks where new member firms connect with multiple existing actors. The results imply that resilience of SOIEs do not arise from intrinsic properties of the system alone, but from the interplay of network topology with external social and ecological constraints.

Suggested Citation

  • Weslynne S. Ashton & Shauhrat S. Chopra & And Rahul Kashyap, 2017. "Life and Death of Industrial Ecosystems," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:605-:d:95701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weslynne S. Ashton, 2009. "The Structure, Function, and Evolution of a Regional Industrial Ecosystem," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 228-246, April.
    2. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    3. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2017. "Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements," Ecological Economics, Elsevier, vol. 137(C), pages 148-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    2. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability, Springer, vol. 2(2), pages 669-692, June.
    3. Saskia Van Broekhoven & Anne Lorène Vernay, 2018. "Integrating Functions for a Sustainable Urban System: A Review of Multifunctional Land Use and Circular Urban Metabolism," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    4. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    5. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    6. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    7. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    8. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    9. Michael Martin, 2020. "Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 626-638, June.
    10. Hélène Cervo & Stéphane Ogé & Amtul Samie Maqbool & Francisco Mendez Alva & Lindsay Lessard & Alexandre Bredimas & Jean-Henry Ferrasse & Greet Van Eetvelde, 2019. "A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    11. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    2. Rachelle LeBlanc & Carole Tranchant & Yves Gagnon & Raymond Côté, 2016. "Potential for Eco-Industrial Park Development in Moncton, New Brunswick (Canada): A Comparative Analysis," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    3. Pakarinen, Suvi & Mattila, Tuomas & Melanen, Matti & Nissinen, Ari & Sokka, Laura, 2010. "Sustainability and industrial symbiosis—The evolution of a Finnish forest industry complex," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1393-1404.
    4. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    5. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.
    6. Spaniol, Matthew J. & Rowland, Nicholas J., 2022. "Business ecosystems and the view from the future: The use of corporate foresight by stakeholders of the Ro-Ro shipping ecosystem in the Baltic Sea Region," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    8. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    9. Diwekar, Urmila, 2005. "Green process design, industrial ecology, and sustainability: A systems analysis perspective," Resources, Conservation & Recycling, Elsevier, vol. 44(3), pages 215-235.
    10. Deishin Lee, 2012. "Turning Waste into By-Product," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 115-127, January.
    11. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    12. Ahmad, Farhan & Bask, Anu & Laari, Sini & Robinson, Craig V., 2023. "Business management perspectives on the circular economy: Present state and future directions," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    14. Robin Molinier & Pascal da Costa, 2019. "Infrastructure sharing synergies and industrial symbiosis: optimal capacity oversizing and pricing," Post-Print hal-01792032, HAL.
    15. Tiu, Bryan Timothy C. & Cruz, Dennis E., 2017. "An MILP model for optimizing water exchanges in eco-industrial parks considering water quality," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 89-96.
    16. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    17. Michael Ross Jayne, 2001. "Managing environmental risk in existing light industrial estates," Business Strategy and the Environment, Wiley Blackwell, vol. 10(6), pages 365-382, November.
    18. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    19. Fredrik von Malmborg, 2004. "Networking for knowledge transfer: towards an understanding of local authority roles in regional industrial ecosystem management," Business Strategy and the Environment, Wiley Blackwell, vol. 13(5), pages 334-346, September.
    20. Taskhiri, Mohammad Sadegh & Tan, Raymond R. & Chiu, Anthony S.F., 2011. "Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 730-737.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:605-:d:95701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.