IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i3p626-638.html
   My bibliography  Save this article

Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis

Author

Listed:
  • Michael Martin

Abstract

Industrial symbiosis (IS), where different entities collaborate in the management of energy, utilities, materials, or services, has been identified as an approach to improve resource efficiency and circularity in industry. This article assesses the environmental performance of an IS network with firms involved in waste management, soil, surfaces, paper, lumber, and energy. The aim is to highlight the environmental performance of an IS network and pay particular attention to the improved performance for products in the IS network. Life cycle assessment is used to compare the current IS network with a reference scenario and a potential future development. The results suggest that there are significant benefits from the IS network. Large reductions in greenhouse gas (GHG) emissions and abiotic resource depletion were identified. Furthermore, large reductions in local impacts, namely eutrophication and acidification impacts are illustrated. It was shown that all firms in the network benefit from the synergies involved, with a large share of the benefits stemming from the facilitated exchanges with the waste management company. The replacement of conventional products and energy streams with bio‐based counterparts from within the network is of significant importance. Finally, the results point to the importance of the facilitation of by‐product synergies, and the significant value this creates in the region, with large potential to improve the environmental performance of firms and their products.

Suggested Citation

  • Michael Martin, 2020. "Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 626-638, June.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:3:p:626-638
    DOI: 10.1111/jiec.12941
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12941
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyeong†Woo Kim & Satoshi Ohnishi & Minoru Fujii & Tsuyoshi Fujita & Hung†Suck Park, 2018. "Evaluation and Allocation of Greenhouse Gas Reductions in Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 275-287, April.
    2. Weslynne S. Ashton & Shauhrat S. Chopra & And Rahul Kashyap, 2017. "Life and Death of Industrial Ecosystems," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    3. Chang Yu & Chris Davis & Gerard P.J. Dijkema, 2014. "Understanding the Evolution of Industrial Symbiosis Research," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 280-293, April.
    4. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    5. Laura Sokka & Suvi Lehtoranta & Ari Nissinen & Matti Melanen, 2011. "Analyzing the Environmental Benefits of Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 15(1), pages 137-155, February.
    6. François Dumoulin & Tom Wassenaar & Angel Avadí & Jean-Marie Paillat, 2017. "A Framework for Accurately Informing Facilitated Regional Industrial Symbioses on Environmental Consequences," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1049-1067, October.
    7. Frida Røyne & Roman Hackl & Emma Ringström & Johanna Berlin, 2018. "Environmental Evaluation of Industry Cluster Strategies with a Life Cycle Perspective: Replacing Fossil Feedstock with Forest‐Based Feedstock and Increasing Thermal Energy Integration," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 694-705, August.
    8. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    9. Tuomas Mattila & Suvi Lehtoranta & Laura Sokka & Matti Melanen & Ari Nissinen, 2012. "Methodological Aspects of Applying Life Cycle Assessment to Industrial Symbioses," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 51-60, February.
    10. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    11. Lynda Aissani & Antoine Lacassagne & Jean‐Baptiste Bahers & Samuel Le Féon, 2019. "Life cycle assessment of industrial symbiosis: A critical review of relevant reference scenarios," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 972-985, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zygmunt Kowalski & Joanna Kulczycka & Agnieszka Makara & Giovanni Mondello & Roberta Salomone, 2023. "Industrial Symbiosis for Sustainable Management of Meat Waste: The Case of Śmiłowo Eco-Industrial Park, Poland," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    2. Enora Barrau & Mathias Glaus, 2022. "Structural and Environmental Performance of Evolving Industrial Symbiosis: A Multidimensional Analysis," Sustainability, MDPI, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    2. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    3. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    4. Hafiz Haq & Petri Välisuo & Seppo Niemi, 2021. "Modelling Sustainable Industrial Symbiosis," Energies, MDPI, vol. 14(4), pages 1-16, February.
    5. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    6. Fraccascia, Luca & Albino, Vito & Garavelli, Claudio A., 2017. "Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 273-286.
    7. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    8. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    9. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    10. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability,, Springer.
    11. Bhavesh Kumar & Love Kumar & Avinash Kumar & Ramna Kumari & Uroosa Tagar & Claudio Sassanelli, 2024. "Green finance in circular economy: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16419-16459, July.
    12. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
    13. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    14. Lucija Ažman Momirski & Barbara Mušič & Boštjan Cotič, 2021. "Urban Strategies Enabling Industrial and Urban Symbiosis: The Case of Slovenia," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    15. Hyeong-Woo Kim & Liang Dong & Seok Jung & Hung-Suck Park, 2018. "The Role of the Eco-Industrial Park (EIP) at the National Economy: An Input-Output Analysis on Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    16. Antonino Galati & Giorgio Schifani & Maria Crescimanno & Demetris Vrontis & Giuseppina Migliore, 2018. "Innovation strategies geared toward the circular economy: A case study of the organic olive-oil industry," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2018(1), pages 137-158.
    17. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    18. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    19. Changhao Liu & Raymond Côté, 2017. "A Framework for Integrating Ecosystem Services into China’s Circular Economy: The Case of Eco-Industrial Parks," Sustainability, MDPI, vol. 9(9), pages 1-20, August.
    20. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:3:p:626-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.