IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v119y2017icp89-96.html
   My bibliography  Save this article

An MILP model for optimizing water exchanges in eco-industrial parks considering water quality

Author

Listed:
  • Tiu, Bryan Timothy C.
  • Cruz, Dennis E.

Abstract

Unlike other resources that may come in multiple energy forms, there is no substitute for freshwater. Therefore, Eco-Industrial Parks (EIPs) have been designed to encourage interplant water exchange networks in order to minimize the consumption of freshwater as well as the generation of wastewater. This study proposes a model that simultaneously minimizes the economic and the environmental objective functions of an EIP through goal programming. The economic costs considered integrates the necessary piping and operating costs together with the freshwater, wastewater, and treatment costs, while the environmental impact considered the volume and the quality of the water used and released by the EIP. Results showed that the considering water volume and quality in minimizing the environmental impact gave better results than considering water volume only. Economic costs and environmental impacts were also found to be dependent on the priorities given to each goal, as well as the treatment quality of the processes.

Suggested Citation

  • Tiu, Bryan Timothy C. & Cruz, Dennis E., 2017. "An MILP model for optimizing water exchanges in eco-industrial parks considering water quality," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 89-96.
  • Handle: RePEc:eee:recore:v:119:y:2017:i:c:p:89-96
    DOI: 10.1016/j.resconrec.2016.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344916301422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2016.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    2. Witjes, Sjors & Lozano, Rodrigo, 2016. "Towards a more Circular Economy: Proposing a framework linking sustainable public procurement and sustainable business models," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 37-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harshini Mallawaarachchi & Gayani Karunasena & Yasangika Sandanayake & Chunlu Liu, 2023. "Conceptualising a Model to Assess the Optimum Water Flow of Industrial Symbiosis (IS)," Sustainability, MDPI, vol. 15(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    2. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    3. Diwekar, Urmila, 2005. "Green process design, industrial ecology, and sustainability: A systems analysis perspective," Resources, Conservation & Recycling, Elsevier, vol. 44(3), pages 215-235.
    4. Deishin Lee, 2012. "Turning Waste into By-Product," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 115-127, January.
    5. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    6. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    7. Zhang, Zhaowen & Jiang, Yaohui, 2022. "Can green public procurement change energy efficiency? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 113(C).
    8. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    9. Michael Ross Jayne, 2001. "Managing environmental risk in existing light industrial estates," Business Strategy and the Environment, Wiley Blackwell, vol. 10(6), pages 365-382, November.
    10. Castro-Lopez, Adrian & Iglesias, Victor & Santos-Vijande, María Leticia, 2023. "Organizational capabilities and institutional pressures in the adoption of circular economy," Journal of Business Research, Elsevier, vol. 161(C).
    11. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    12. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    13. Fredrik von Malmborg, 2004. "Networking for knowledge transfer: towards an understanding of local authority roles in regional industrial ecosystem management," Business Strategy and the Environment, Wiley Blackwell, vol. 13(5), pages 334-346, September.
    14. Taskhiri, Mohammad Sadegh & Tan, Raymond R. & Chiu, Anthony S.F., 2011. "Emergy-based fuzzy optimization approach for water reuse in an eco-industrial park," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 730-737.
    15. Mael Jambou & Andre Torre & Sabrina Dermine-Brullot & Sébastien Bourdin, 2022. "Inter-firm cooperation and local industrial ecology processes: evidence from three French case studies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 331-358, April.
    16. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    17. Mina Nasiri & Tero Rantala & Minna Saunila & Juhani Ukko & Hannu Rantanen, 2018. "Transition towards Sustainable Solutions: Product, Service, Technology, and Business Model," Sustainability, MDPI, vol. 10(2), pages 1-18, January.
    18. Weslynne S. Ashton & Shauhrat S. Chopra & And Rahul Kashyap, 2017. "Life and Death of Industrial Ecosystems," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    19. Viviana D'Angelo & Francesco Cappa & Enzo Peruffo, 2023. "Walking the tightrope: Circular economy breadth and firm economic performance," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(4), pages 1869-1882, July.
    20. Magdalena Gabriel & Josef-Peter Schöggl & Alfred Posch, 2017. "Early Front-End Innovation Decisions for Self-Organized Industrial Symbiosis Dynamics—A Case Study on Lignin Utilization," Sustainability, MDPI, vol. 9(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:119:y:2017:i:c:p:89-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.