IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1881-d115626.html
   My bibliography  Save this article

Making the Water–Soil–Waste Nexus Work: Framing the Boundaries of Resource Flows

Author

Listed:
  • Tamara Avellán

    (Water Resource Management Unit, Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), United Nations University, 01067 Dresden, Germany
    These authors contributed equally to this work and are considered to be co-first authors.)

  • Mario Roidt

    (Water Resource Management Unit, Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), United Nations University, 01067 Dresden, Germany
    These authors contributed equally to this work and are considered to be co-first authors.)

  • Adam Emmer

    (Department of Human Dimensions of Global Change, Global Change Research Institute (CzechGlobe), Czech Academy of Sciences, 603 00 Brno, Czech Republic)

  • Janis Von Koerber

    (Department Water, Environment, Civil Engineering and Safety, University of Applied Sciences Magdeburg-Stendal, Breitscheidstr. 2, D-39011 Magdeburg, Germany)

  • Petra Schneider

    (Department Water, Environment, Civil Engineering and Safety, University of Applied Sciences Magdeburg-Stendal, Breitscheidstr. 2, D-39011 Magdeburg, Germany)

  • Wolf Raber

    (inter 3 GmbH Institute for Resource Management, 10585 Berlin, Germany)

Abstract

The Sustainable Development Goals have placed integrated resources management, such as integrated water resource management, at the heart of their targets. The upcoming “International Decade for Action—Water for Sustainable Development”, 2018–2028 has highlighted the importance of promoting efficient water usage at all levels, taking into account the water, food, energy, and environmental nexus. While integrated resource management approaches have been defined and applied for decades, nexus approaches are more recent. For these latter approaches to be implemented on the ground, their system boundaries need to be clarified. While the Water–Energy–Food Nexus focuses on sectors, the Water–Soil–Waste Nexus addresses linkages between environmental resources—namely water, soil and waste—to tackle sustainable management. In this paper, we analyzed integrated management systems and how their system boundaries are defined. From this we determined that in order for system boundaries to be applicable, they should be clear, wide and flexible. Based on this, we propose the boundary of the Water–Soil–Waste Nexus system. We use two case studies to exemplify the usefulness of these system boundaries.

Suggested Citation

  • Tamara Avellán & Mario Roidt & Adam Emmer & Janis Von Koerber & Petra Schneider & Wolf Raber, 2017. "Making the Water–Soil–Waste Nexus Work: Framing the Boundaries of Resource Flows," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1881-:d:115626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Petit, 2016. "Paradise lost? The difficulties in defining and monitoring Integrated Water Resources Management indicators," Post-Print halshs-01610661, HAL.
    2. Wichelns, Dennis, 2017. "The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective?," Environmental Science & Policy, Elsevier, vol. 69(C), pages 113-123.
    3. Petra Schneider & Le Hung Anh & Jörg Wagner & Jan Reichenbach & Anja Hebner, 2017. "Solid Waste Management in Ho Chi Minh City, Vietnam: Moving towards a Circular Economy?," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    4. Aiko Endo & Kimberly Burnett & Pedcris M. Orencio & Terukazu Kumazawa & Christopher Wada & Akira Ishii & Izumi Tsurita & Makoto Taniguchi, 2015. "Methods of the Water-Energy-Food Nexus," Working Papers 2015-12, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myriam Pham‐Truffert & Florence Metz & Manuel Fischer & Henri Rueff & Peter Messerli, 2020. "Interactions among Sustainable Development Goals: Knowledge for identifying multipliers and virtuous cycles," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1236-1250, September.
    2. You, Chanhee & Han, Seulki & Kim, Jiyong, 2021. "Integrative design of the optimal biorefinery and bioethanol supply chain under the water-energy-food-land (WEFL) nexus framework," Energy, Elsevier, vol. 228(C).
    3. Yannan Zhao & Jie Fan & Bo Liang & Lu Zhang, 2019. "Evaluation of Sustainable Livelihoods in the Context of Disaster Vulnerability: A Case Study of Shenzha County in Tibet, China," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    4. Bassel Daher & Rabi H. Mohtar & Efstratios N. Pistikopoulos & Kent E. Portney & Ronald Kaiser & Walid Saad, 2018. "Developing Socio-Techno-Economic-Political (STEP) Solutions for Addressing Resource Nexus Hotspots," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    5. Petra Schneider & Lukas Folkens & Andreas Meyer & Tino Fauk, 2019. "Sustainability and Dimensions of a Nexus Approach in a Sharing Economy," Sustainability, MDPI, vol. 11(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daohan Huang & Zihao Shen & Chengshuang Sun & Guijun Li, 2021. "Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input–Output Analysis of the Local Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1673-1688, April.
    2. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    3. Srigiri, Srinivasa Reddy & Dombrowsky, Ines, 2021. "Governance of the water-energy-food nexus for an integrated implementation of the 2030 Agenda: Conceptual and methodological framework for analysis," IDOS Discussion Papers 2/2021, German Institute of Development and Sustainability (IDOS).
    4. Aries Purwanto & Janez Sušnik & Franciscus X. Suryadi & Charlotte de Fraiture, 2021. "Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. Oghenekaro Nelson Odume & Blessing Nonye Onyima & Chika Felicitas Nnadozie & Gift Ochonogor Omovoh & Thandi Mmachaka & Blessing Odafe Omovoh & Jude Edafe Uku & Frank Chukwuzuoke Akamagwuna & Francis O, 2022. "Governance and Institutional Drivers of Ecological Degradation in Urban River Ecosystems: Insights from Case Studies in African Cities," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    6. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    7. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    8. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    9. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    10. Simpson, Gareth & Jewitt, Graham & Becker, William & Badenhorst, Jessica & Neves, Ana & Rovira, Pere & Pascual, Victor, 2020. "The Water-Energy-Food Nexus Index: A Tool for Integrated Resource Management and Sustainable Development," OSF Preprints tdhw5, Center for Open Science.
    11. Martinez-Hernandez, Elias & Leach, Matthew & Yang, Aidong, 2017. "Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym," Applied Energy, Elsevier, vol. 206(C), pages 1009-1021.
    12. Märker, Carolin & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "Integrated governance for the food–energy–water nexus – The scope of action for institutional change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 290-300.
    13. Najam uz Zehra Gardezi & Brent S. Steel & Angela Lavado, 2020. "The Impact of Efficacy, Values, and Knowledge on Public Preferences Concerning Food–Water–Energy Policy Tradeoffs," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    14. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    15. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    16. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    17. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    19. Junlian Gao & Xiangyang Xu & Guiying Cao & Yurii M. Ermoliev & Tatiana Y. Ermolieva & Elena A. Rovenskaya, 2018. "Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    20. Noudeng Vongdala & Hoang-Dung Tran & Tran Dang Xuan & Rolf Teschke & Tran Dang Khanh, 2018. "Heavy Metal Accumulation in Water, Soil, and Plants of Municipal Solid Waste Landfill in Vientiane, Laos," IJERPH, MDPI, vol. 16(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1881-:d:115626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.