IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p929-d77976.html
   My bibliography  Save this article

Fostering Residential Demand Response through Dynamic Pricing Schemes: A Behavioural Review of Smart Grid Pilots in Europe

Author

Listed:
  • Kris Kessels

    (VITO (Vlaamse Instelling voor Technologisch Onderzoek)/Energyville, Boeretang 200, 2400 Mol, Belgium)

  • Carolien Kraan

    (ECN (Energieonderzoek Centrum Nederland), Westerduinweg 3, 1755 ZG Petten, The Netherlands)

  • Ludwig Karg

    (BAUM Consult GmbH, Gotzinger Straße 48/50, 81371 München, Germany)

  • Simone Maggiore

    (RSE SpA, Via Rubattino 54, 20134 Milan, Italy)

  • Pieter Valkering

    (VITO (Vlaamse Instelling voor Technologisch Onderzoek)/Energyville, Boeretang 200, 2400 Mol, Belgium)

  • Erik Laes

    (VITO (Vlaamse Instelling voor Technologisch Onderzoek)/Energyville, Boeretang 200, 2400 Mol, Belgium)

Abstract

Many smart grid projects make use of dynamic pricing schemes aimed to motivate consumers to shift and/or decrease energy use. Based upon existing literature and analyses of current smart grid projects, this survey paper presents key lessons on how to encourage households to adjust energy end use by means of dynamic tariffs. The paper identifies four key hypotheses related to fostering demand response through dynamic tariff schemes and examines whether these hypotheses can be accepted or rejected based on a review of published findings from a range of European pilot projects. We conclude that dynamic pricing schemes have the power to adjust energy consumption behavior within households. In order to work effectively, the dynamic tariff should be simple to understand for the end users, with timely notifications of price changes, a considerable effect on their energy bill and, if the tariff is more complex, the burden for the consumer could be eased by introducing automated control. Although sometimes the mere introduction of a dynamic tariff has proven to be effective, often the success of the pricing scheme depends also on other factors influencing the behavior of end users. An important condition to make dynamic tariffs work is that the end users should be engaged with them.

Suggested Citation

  • Kris Kessels & Carolien Kraan & Ludwig Karg & Simone Maggiore & Pieter Valkering & Erik Laes, 2016. "Fostering Residential Demand Response through Dynamic Pricing Schemes: A Behavioural Review of Smart Grid Pilots in Europe," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:929-:d:77976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    2. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    3. Strengers, Yolande, 2012. "Peak electricity demand and social practice theories: Reframing the role of change agents in the energy sector," Energy Policy, Elsevier, vol. 44(C), pages 226-234.
    4. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    5. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    6. Bartusch, Cajsa & Alvehag, Karin, 2014. "Further exploring the potential of residential demand response programs in electricity distribution," Applied Energy, Elsevier, vol. 125(C), pages 39-59.
    7. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    8. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    9. Breukers, S.C. & Heiskanen, E. & Brohmann, B. & Mourik, R.M. & Feenstra, C.F.J., 2011. "Connecting research to practice to improve energy demand-side management (DSM)," Energy, Elsevier, vol. 36(4), pages 2176-2185.
    10. Dütschke, Elisabeth & Paetz, Alexandra-Gwyn, 2013. "Dynamic electricity pricing—Which programs do consumers prefer?," Energy Policy, Elsevier, vol. 59(C), pages 226-234.
    11. Hans-Jürgen Appelrath & Orestis Terzidis & Christof Weinhardt, 2012. "Internet of Energy," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 4(1), pages 1-2, February.
    12. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    13. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    14. Giordano, Vincenzo & Fulli, Gianluca, 2012. "A business case for Smart Grid technologies: A systemic perspective," Energy Policy, Elsevier, vol. 40(C), pages 252-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioana Bejan & Carsten Lynge Jensen & Laura M. Andersen & Lars Gårn Hansen, 2018. "The Economic Value of Habits in Household Production – A Field Experiment," IFRO Working Paper 2018/01, University of Copenhagen, Department of Food and Resource Economics.
    2. Christensen, Toke Haunstrup & Friis, Freja & Bettin, Steffen & Throndsen, William & Ornetzeder, Michael & Skjølsvold, Tomas Moe & Ryghaug, Marianne, 2020. "The role of competences, engagement, and devices in configuring the impact of prices in energy demand response: Findings from three smart energy pilots with households," Energy Policy, Elsevier, vol. 137(C).
    3. Siiri Söyrinki & Eva Heiskanen & Kaisa Matschoss, 2018. "Piloting Demand Response in Retailing: Lessons Learned in Real-Life Context," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    4. Ramos, Dorel Soares & Del Carpio Huayllas, Tesoro Elena & Morozowski Filho, Marciano & Tolmasquim, Mauricio Tiomno, 2020. "New commercial arrangements and business models in electricity distribution systems: The case of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Anh-Duc Nguyen & Van-Hai Bui & Akhtar Hussain & Duc-Huy Nguyen & Hak-Man Kim, 2018. "Impact of Demand Response Programs on Optimal Operation of Multi-Microgrid System," Energies, MDPI, vol. 11(6), pages 1-18, June.
    6. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Consumer preferences for the design of a demand response quota scheme – Results of a choice experiment in Germany," Energy Policy, Elsevier, vol. 167(C).
    7. Ioana Bejan & Carsten Lynge Jensen & Laura M. Andersen & Lars Gårn Hansen, 2019. "The hidden cost of real time electricity pricing," IFRO Working Paper 2019/03, University of Copenhagen, Department of Food and Resource Economics.
    8. Seong-Kyu Kim & Jun-Ho Huh, 2018. "A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective," Energies, MDPI, vol. 11(8), pages 1-22, July.
    9. Anna Mengolini & Flavia Gangale & Julija Vasiljevska, 2016. "Exploring Community-Oriented Approaches in Demand Side Management Projects in Europe," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    10. Patrick Ludwig & Christian Winzer, 2022. "Tariff Menus to Avoid Rebound Peaks: Results from a Discrete Choice Experiment with Swiss Customers," Energies, MDPI, vol. 15(17), pages 1-21, August.
    11. Ladenburg, Jacob & Jensen, Kirsten Lund & Lodahl, Christa & Keles, Dogan, 2022. "Testing for non-linear willingness to accept compensation for controlled electricity switch-offs using choice experiments," Energy, Elsevier, vol. 238(PB).
    12. María del P. Pablo-Romero ,, & Rafael Pozo-Barajas & Javier Sánchez-Rivas, 2017. "Relationships between Tourism and Hospitality Sector Electricity Consumption in Spanish Provinces (1999–2013)," Sustainability, MDPI, vol. 9(4), pages 1-12, March.
    13. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    14. Lim, Keumju & Lee, Jongsu & Lee, Hyunjoo, 2021. "Implementing automated residential demand response in South Korea: Consumer preferences and market potential," Utilities Policy, Elsevier, vol. 70(C).
    15. Jing Liang & Yueming Qiu & Poornima Padmanabhan, 2017. "Consumers’ Attitudes towards Surcharges on Distributed Renewable Energy Generation and Energy Efficiency Programs," Sustainability, MDPI, vol. 9(8), pages 1-23, August.
    16. Gupta, Rajat & Morey, Johanna, 2022. "Empirical evaluation of demand side response trials in UK dwellings with smart low carbon technologies," Renewable Energy, Elsevier, vol. 199(C), pages 993-1004.
    17. Antonio Gabaldón & Carlos Álvarez & María Del Carmen Ruiz-Abellón & Antonio Guillamón & Sergio Valero-Verdú & Roque Molina & Ana García-Garre, 2018. "Integration of Methodologies for the Evaluation of Offer Curves in Energy and Capacity Markets through Energy Efficiency and Demand Response," Sustainability, MDPI, vol. 10(2), pages 1-27, February.
    18. Bejan, Ioana & Jensen, Carsten Lynge & Andersen, Laura M. & Hansen, Lars Gårn, 2021. "Inducing flexibility of household electricity demand: The overlooked costs of reacting to dynamic incentives," Applied Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    2. Layer, Patrick & Feurer, Sven & Jochem, Patrick, 2017. "Perceived price complexity of dynamic energy tariffs: An investigation of antecedents and consequences," Energy Policy, Elsevier, vol. 106(C), pages 244-254.
    3. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    4. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    5. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    6. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    7. Goldbach, Kristin & Rotaru, Andreea Mihaela & Reichert, Stefan & Stiff, George & Gölz, Sebastian, 2018. "Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts," Energy Policy, Elsevier, vol. 115(C), pages 239-248.
    8. Silva, Hendrigo Batista da & Santiago, Leonardo P., 2018. "On the trade-off between real-time pricing and the social acceptability costs of demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1513-1521.
    9. Dong, Jun & Jiang, Yuzheng & Liu, Dongran & Dou, Xihao & Liu, Yao & Peng, Shicheng, 2022. "Promoting dynamic pricing implementation considering policy incentives and electricity retailers’ behaviors: An evolutionary game model based on prospect theory," Energy Policy, Elsevier, vol. 167(C).
    10. Nilsson, Anders & Lazarevic, David & Brandt, Nils & Kordas, Olga, 2018. "Household responsiveness to residential demand response strategies: Results and policy implications from a Swedish field study," Energy Policy, Elsevier, vol. 122(C), pages 273-286.
    11. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    12. Xu, Xiaojing & Chen, Chien-fei, 2019. "Energy efficiency and energy justice for U.S. low-income households: An analysis of multifaceted challenges and potential," Energy Policy, Elsevier, vol. 128(C), pages 763-774.
    13. Belton, Cameron A. & Lunn, Peter D., 2020. "Smart choices? An experimental study of smart meters and time-of-use tariffs in Ireland," Energy Policy, Elsevier, vol. 140(C).
    14. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    15. Freier, Julia & von Loessl, Victor, 2022. "Dynamic electricity tariffs: Designing reasonable pricing schemes for private households," Energy Economics, Elsevier, vol. 112(C).
    16. Ilaria Vigna & Jessica Balest & Wilmer Pasut & Roberta Pernetti, 2020. "Office Occupants’ Perspective Dealing with Energy Flexibility: A Large-Scale Survey in the Province of Bolzano," Energies, MDPI, vol. 13(17), pages 1-20, August.
    17. Pretto, Madeline, 2021. "Tail-risk Comprehension and Protection in Real-time Electricity Pricing : Experimental Evidence," Warwick-Monash Economics Student Papers 25, Warwick Monash Economics Student Papers.
    18. Hu, Zheng & Kim, Jin-ho & Wang, Jianhui & Byrne, John, 2015. "Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 743-751.
    19. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    20. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:929-:d:77976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.