IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p723-d74940.html
   My bibliography  Save this article

Measuring Carbon Emissions of Pavement Construction in China

Author

Listed:
  • Youliang Huang

    (Department of Construction and Real Estate, Southeast University, Nanjing 210096, China)

  • Yan Ning

    (Department of Construction and Real Estate, Southeast University, Nanjing 210096, China)

  • Tao Zhang

    (Housing and Urban-Rural Development Bureau of Suzhou, Jiangsu 215002, China)

  • Jiajie Wu

    (State Grid Fujian Economic Research Institute, Fuzhou, 350012, China)

Abstract

While various methodologies for quantifying carbon emissions of pavement construction are developed worldwide, adopting and promoting the existing tools to China’s market is found fairly challenging due to institutional constraints. Therefore, the objectives of this study are to propose a methodology for measuring carbon emissions of pavement construction compatible with the fixed pricing systems prevalent in China; and develop an automatic tool for carbon estimations. The total carbon emissions are measured by aggregating emissions of energy consumption and materials used along with four stages, namely material manufacture, transportation, construction, and disposal. A set of composite carbon emission factors for energy and materials was calculated based on existing emission factors with the consideration of the boundaries concerned. The quantity of energy and materials used in pavement construction are obtained through bills of quantity and the fixed price system. The database of the emission factors for energy and materials was embedded into a C# based tool, and validated in a real case.

Suggested Citation

  • Youliang Huang & Yan Ning & Tao Zhang & Jiajie Wu, 2016. "Measuring Carbon Emissions of Pavement Construction in China," Sustainability, MDPI, vol. 8(8), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:723-:d:74940
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfang Sun & Ji Chen & Xiang Peng & Yu Zhang & Jialin Mo & Xin Liao & Qiang Tang, 2022. "The Utilization of Modified Zeolite for the Removal of Cs Ions in an Aqueous Solution: Adsorption Capacity, Isotherms, Kinetics and Microscopic Studies," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    2. Junfang Sun & Angran Tian & Zheyuan Feng & Yu Zhang & Feiyang Jiang & Qiang Tang, 2021. "Evaluation of Zero-Valent Iron for Pb(II) Contaminated Soil Remediation: From the Analysis of Experimental Mechanism Hybird with Carbon Emission Assessment," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    3. Konstantinos Mantalovas & Gaetano Di Mino, 2019. "The Sustainability of Reclaimed Asphalt as a Resource for Road Pavement Management through a Circular Economic Model," Sustainability, MDPI, vol. 11(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    2. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    3. Hache, Emmanuel & Simoën, Marine & Seck, Gondia Sokhna & Bonnet, Clément & Jabberi, Aymen & Carcanague, Samuel, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, Elsevier, vol. 163(C), pages 114-133.
    4. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
    5. Michele Fioretti, 2022. "Caring or Pretending to Care? Social Impact, Firms' Objectives, and Welfare (former title: Social Responsibility and Firm's Objectives)," SciencePo Working papers hal-03393065, HAL.
    6. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    7. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    8. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    9. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    10. Fan Dai & Ling Xiong & Ding Ma, 2017. "How to Set the Allowance Benchmarking for Cement Industry in China’s Carbon Market: Marginal Analysis and the Case of the Hubei Emission Trading Pilot," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    11. Dincbas, Tugba & Ergeneli, Azize & Yigitbasioglu, Hakan, 2021. "Clean technology adoption in the context of climate change: Application in the mineral products industry," Technology in Society, Elsevier, vol. 64(C).
    12. Tae Hyoung Kim & Chang U Chae & Gil Hwan Kim & Hyoung Jae Jang, 2016. "Analysis of CO 2 Emission Characteristics of Concrete Used at Construction Sites," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    13. Luo, Zongwei & Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Papadopoulos, Thanos & Hazen, Benjamin & Roubaud, David, 2017. "Sustainable production framework for cement manufacturing firms: A behavioural perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 495-502.
    14. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    15. Hurmekoski, Elias & Jonsson, Ragnar & Nord, Tomas, 2015. "Context, drivers, and future potential for wood-frame multi-story construction in Europe," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 181-196.
    16. Jozef Švajlenka & Mária Kozlovská, 2020. "Analysis of the Energy Balance of Constructions Based on Wood during Their Use in Connection with CO 2 Emissions," Energies, MDPI, vol. 13(18), pages 1-16, September.
    17. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    18. Ä°rem Åžanal, 2018. "Discussion on the effectiveness of cement replacement for carbon dioxide (CO2) emission reduction in concrete," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 366-378, April.
    19. Bergen, Sophia L. & Zemberekci, Lyn & Nair, Sriramya Duddukuri, 2022. "A review of conventional and alternative cementitious materials for geothermal wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Jamiu Adetayo Adeniran & Rafiu Olasunkanmi Yusuf & Adeniyi Saheed Aremu & Temitope Mariam Aareola, 2019. "Exergetic analysis and pollutants emission from a rotary kiln system in a major cement manufacturing plant," Energy & Environment, , vol. 30(4), pages 601-616, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:723-:d:74940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.