IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p517-d71076.html
   My bibliography  Save this article

Evidence of Absolute Decoupling from Real World Policy Mixes in Europe

Author

Listed:
  • Doreen Fedrigo-Fazio

    (European Environmental Citizens’ Organisation for Standardisation (ECOS), 1050 Brussels, Belgium)

  • Jean-Pierre Schweitzer

    (Institute for European Environmental Policy, 1000 Brussels, Belgium)

  • Patrick Ten Brink

    (Institute for European Environmental Policy, 1000 Brussels, Belgium)

  • Leonardo Mazza

    (European Environmental Bureau (EEB), 1000 Bruxelles, Belgium)

  • Alison Ratliff

    (Institute for European Environmental Policy, 1000 Brussels, Belgium)

  • Emma Watkins

    (Institute for European Environmental Policy, 1000 Brussels, Belgium)

Abstract

In resource economics, decoupling from environmental impacts is assumed to be beneficial. However, the success of efforts to increase resource productivity should be placed within the context of the earth’s resources and ecosystems as theoretically finite and contingent on a number of threshold values. Thus far relatively few analyses exist of policies which have successfully implemented strategies for decoupling within these limits. Through ex-post evaluation of a number of real world policy mixes from European Union member states, this paper further develops definitions of the concept of decoupling. Beyond absolute (and relative) decoupling, “ absolute decoupling within limits ” is proposed as an appropriate term for defining resource-productivity at any scale which respects the existing real world limits on resources and ecosystems and as such, contributes to meeting sustainability objectives. Policy mixes presented here cover a range of resources such as fish stocks, fertilizers, aggregates and fossil based materials (plastics). Policy mixes demonstrating absolute decoupling and at least one where absolute decoupling within limits has occurred, provide insights on developing resource efficiency policies in Europe and beyond.

Suggested Citation

  • Doreen Fedrigo-Fazio & Jean-Pierre Schweitzer & Patrick Ten Brink & Leonardo Mazza & Alison Ratliff & Emma Watkins, 2016. "Evidence of Absolute Decoupling from Real World Policy Mixes in Europe," Sustainability, MDPI, vol. 8(6), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:517-:d:71076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    2. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    3. Marek Antosiewicz & Piotr Lewandowski & Jan Witajewski-Baltvilks, 2016. "Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    4. Gunnar Haraldsson & David Carey, 2011. "Ensuring a Sustainable and Efficient Fishery in Iceland," OECD Economics Department Working Papers 891, OECD Publishing.
    5. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    6. Daly, Herman E., 1990. "Toward some operational principles of sustainable development," Ecological Economics, Elsevier, vol. 2(1), pages 1-6, April.
    7. Max-Neef, Manfred, 1995. "Economic growth and quality of life: a threshold hypothesis," Ecological Economics, Elsevier, vol. 15(2), pages 115-118, November.
    8. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
    9. Odegard, I.Y.R. & van der Voet, E., 2014. "The future of food — Scenarios and the effect on natural resource use in agriculture in 2050," Ecological Economics, Elsevier, vol. 97(C), pages 51-59.
    10. Marek Antosiewicz & Piotr Lewandowski & Jan Witajewski-Baltvilks, 2016. "Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling," Sustainability, MDPI, Open Access Journal, vol. 8(4), pages 1-17, April.
    11. Sorrell, Steve & Lehtonen, Markku & Stapleton, Lee & Pujol, Javier & Toby Champion,, 2012. "Decoupling of road freight energy use from economic growth in the United Kingdom," Energy Policy, Elsevier, vol. 41(C), pages 84-97.
    12. Luken, Ralph A. & Piras, Stefano, 2011. "A critical overview of industrial energy decoupling programs in six developing countries in Asia," Energy Policy, Elsevier, vol. 39(6), pages 3869-3872, June.
    13. Frank Convery & Simon McDonnell & Susana Ferreira, 2007. "The most popular tax in Europe? Lessons from the Irish plastic bags levy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 1-11, September.
    14. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    15. Anthony Bebbington & Leonith Hinojosa & Denise Humphreys Bebbington & Maria Luisa Burneo & Ximena Warnaars, 2008. "Contention and Ambiguity: Mining and the Possibilities of Development," Global Development Institute Working Paper Series 5708, GDI, The University of Manchester.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    2. Jonas Rapsikevicius & Jurgita Bruneckiene & Mantas Lukauskas & Sarunas Mikalonis, 2021. "The Impact of Economic Freedom on Economic and Environmental Performance: Evidence from European Countries," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    3. Schanes, Karin & Jäger, Jill & Drummond, Paul, 2019. "Three Scenario Narratives for a Resource-Efficient and Low-Carbon Europe in 2050," Ecological Economics, Elsevier, vol. 155(C), pages 70-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    2. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    3. Zilong Zhang & Bing Xue & Jiaxing Pang & Xingpeng Chen, 2016. "The Decoupling of Resource Consumption and Environmental Impact from Economic Growth in China: Spatial Pattern and Temporal Trend," Sustainability, MDPI, vol. 8(3), pages 1-13, February.
    4. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    5. Wang, Wenwen & Li, Man & Zhang, Ming, 2017. "Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China," Energy, Elsevier, vol. 128(C), pages 11-18.
    6. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    7. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    8. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    9. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    10. Wang, Miao & Feng, Chao, 2021. "Towards a decoupling between economic expansion and carbon dioxide emissions in resources sector: A case study of China’s 29 non-ferrous metal industries," Resources Policy, Elsevier, vol. 74(C).
    11. Jingxing Liu & Hailing Li & Tianqi Liu, 2022. "Decoupling Regional Economic Growth from Industrial CO 2 Emissions: Empirical Evidence from the 13 Prefecture-Level Cities in Jiangsu Province," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
    12. Kalimeris, Panos & Bithas, Kostas & Richardson, Clive & Nijkamp, Peter, 2020. "Hidden linkages between resources and economy: A “Beyond-GDP” approach using alternative welfare indicators," Ecological Economics, Elsevier, vol. 169(C).
    13. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    14. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    15. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
    16. Michael L. Polemis & Panagiotis Fotis & Panayiotis G. Tzeremes & Nickolaos G. Tzeremes, 2022. "On the examination of the decoupling effect of air pollutants from economic growth: a convergence analysis for the US," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 691-707, December.
    17. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    18. Jianbo Hu & Shanshan Gui & Wei Zhang, 2017. "Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    19. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    20. Rui Jiang & Yulin Zhou & Rongrong Li, 2018. "Moving to a Low-Carbon Economy in China: Decoupling and Decomposition Analysis of Emission and Economy from a Sector Perspective," Sustainability, MDPI, vol. 10(4), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:517-:d:71076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.