IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp674-686.html
   My bibliography  Save this article

Theoretical and experimental study of a novel solar indirect-expansion heat pump system employing mini channel PV/T and thermal panels

Author

Listed:
  • Zhou, Jinzhi
  • Zhu, Zishang
  • Zhao, Xudong
  • Yuan, Yanping
  • Fan, Yi
  • Myers, Steve

Abstract

This paper presents the investigation of a novel mini channel PV/T and thermal collectors combined heat pump system, using both experimental and theoretical methods. Data were produced under conditions typical for winter days in Lvliang, China. A simulation model is developed to conduct theoretical evaluation based on real-world conditions. The experimental and simulated electrical and thermal efficiency of PV/T panels, thermal efficiency of thermal collectors and COP of heat pump are compared. It is shown that the experimental and simulated results are in close agreement. The errors range from 4.0% to 9.1%, giving us confidence that this model is reasonable to predict the seasonal performance of the system. The experimental and simulated results of the system provide fundamental data for performance analysis in winter conditions and inform further improvements of similar systems in the future.

Suggested Citation

  • Zhou, Jinzhi & Zhu, Zishang & Zhao, Xudong & Yuan, Yanping & Fan, Yi & Myers, Steve, 2020. "Theoretical and experimental study of a novel solar indirect-expansion heat pump system employing mini channel PV/T and thermal panels," Renewable Energy, Elsevier, vol. 151(C), pages 674-686.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:674-686
    DOI: 10.1016/j.renene.2019.11.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119317410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shim, B.O. & Park, C.-H., 2013. "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea," Energy, Elsevier, vol. 56(C), pages 167-174.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    4. Rossano Albatici & Alessia Gadotti & Christian Baldessari & Michela Chiogna, 2016. "A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
    5. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbasi, Bardia & Li, Simon & Mwesigye, Aggrey, 2024. "Energy, exergy, economic, and environmental (4E) analysis of SAHP water heaters in very cold climatic conditions," Renewable Energy, Elsevier, vol. 226(C).
    2. Li, Rui & Li, Jinping & Zhu, Junjie & Liu, Xiaomin & Novakovic, Vojislav, 2023. "A numerical and experimental study on a novel micro heat pipe PV/T system," Energy, Elsevier, vol. 282(C).
    3. Alshibil, Ahssan M.A. & Vig, Piroska & Farkas, Istvan, 2024. "Performance enhancement attempts on the photovoltaic/thermal module and the sustainability achievements: A review," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    2. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    3. Archan Shah & Moncef Krarti & Joe Huang, 2022. "Energy Performance Evaluation of Shallow Ground Source Heat Pumps for Residential Buildings," Energies, MDPI, vol. 15(3), pages 1-25, January.
    4. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    5. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    6. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    7. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    8. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    9. Alaie, Omid & Maddahian, Reza & Heidarinejad, Ghassem, 2021. "Investigation of thermal interaction between shallow boreholes in a GSHE using the FLS-STRCM model," Renewable Energy, Elsevier, vol. 175(C), pages 1137-1150.
    10. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    11. Rodríguez, Rafael & Díaz, María B., 2009. "Analysis of the utilization of mine galleries as geothermal heat exchangers by means a semi-empirical prediction method," Renewable Energy, Elsevier, vol. 34(7), pages 1716-1725.
    12. Hannah Licharz & Peter Rösmann & Manuel S. Krommweh & Ehab Mostafa & Wolfgang Büscher, 2020. "Energy Efficiency of a Heat Pump System: Case Study in Two Pig Houses," Energies, MDPI, vol. 13(3), pages 1-20, February.
    13. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    14. Xuebin Ma & Junfeng Li & Yucheng Ren & Reaihan E & Qiugang Wang & Jie Li & Sihui Huang & Mingguo Ma, 2022. "Performance and Economic Analysis of the Multi-Energy Complementary Heating System under Different Control Strategies in Cold Regions," Energies, MDPI, vol. 15(21), pages 1-17, November.
    15. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    16. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yan, Yuying & Spitler, Jeffrey D., 2015. "Developmental status and challenges of GWHP and ATES in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 973-985.
    18. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    19. Wei Zhang & Tianyi Wang & Dongsheng Zhang & Jiajia Tang & Peng Xu & Xu Duan, 2020. "A Comprehensive Set of Cooling Measures for the Overall Control and Reduction of High Temperature-Induced Thermal Damage in Oversize Deep Mines: A Case Study," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    20. Sakellariou, Evangelos I. & Axaopoulos, Petros J., 2020. "Energy performance indexes for solar assisted ground source heat pump systems with photovoltaic-thermal collectors," Applied Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:674-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.