IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i6p7904-7925d51423.html
   My bibliography  Save this article

An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall

Author

Listed:
  • Karina Condeixa

    (Programa de Pós-graduação em Engenharia Civil, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-240, Brazil
    Department of Mechanical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain)

  • Eduardo Qualharini

    (Programa de Engenharia Ambiental, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil)

  • Dieter Boer

    (Department of Mechanical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain)

  • Assed Haddad

    (Programa de Engenharia Ambiental, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
    Department of Mechanical Engineering, Universitat Rovira i Virgili, Tarragona 43007, Spain)

Abstract

Life Cycle Assessment is a methodology that investigates impacts linked to a product or service during its entire life cycle. Life Cycle Assessment studies investigate processes and sub-processes in a fragmented way to ascertain their inputs, outputs and emissions and get an overview of the generating sources of their environmental loads. The lifecycle concept involves all direct and indirect processes of the studied object. This article aims to model the material flows in the masonry and drywall systems and internal walls in a Brazilian scenario, and calculate the climate change impacts generated by the transport of the component materials of the systems. Internal walls of a residential dwelling in Rio de Janeiro are analyzed from a qualitative inventory of all life cycles with an analysis of material flows, based on technical and academic literature. All Life Cycle Impact Assessment of the systems is carried out with international data from the database, and using the IPCC2013 method for climate change impacts. This study disregards the refurbishment and possible extensions within the use phase. Thus, the inventory identifies weaknesses of the systems while the impact assessment validates the results. This study allows us a complete understanding about the inner walls systems in the Brazilian scenario, evidencing its main weaknesses and subsidizes decision-making for the industry and for planning of the new buildings.

Suggested Citation

  • Karina Condeixa & Eduardo Qualharini & Dieter Boer & Assed Haddad, 2015. "An Inquiry into the Life Cycle of Systems of Inner Walls: Comparison of Masonry and Drywall," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:6:p:7904-7925:d:51423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/6/7904/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/6/7904/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Annekatrin Lehmann & Daniela Russi & Alba Bala & Matthias Finkbeiner & Pere Fullana-i-Palmer, 2011. "Integration of Social Aspects in Decision Support, Based on Life Cycle Thinking," Sustainability, MDPI, vol. 3(4), pages 1-16, March.
    2. Anthony Halog & Yosef Manik, 2011. "Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 3(2), pages 1-31, February.
    3. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Jiménez-Rivero & Ana De Guzmán-Báez & Justo García-Navarro, 2017. "Enhanced On-Site Waste Management of Plasterboard in Construction Works: A Case Study in Spain," Sustainability, MDPI, vol. 9(3), pages 1-12, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    2. Eleftheriadis, Stathis & Mumovic, Dejan & Greening, Paul, 2017. "Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 811-825.
    3. Jihwan Yeon & Seoki Lee & Phillip M Jolly & Anna S Mattila, 2023. "The impact of environmental management on firm performance in the U.S. lodging REITs: The moderating role of outside board of directors," Tourism Economics, , vol. 29(2), pages 513-532, March.
    4. Paul Ofei-Manu & Satoshi Shimano, 2012. "In Transition towards Sustainability: Bridging the Business and Education Sectors of Regional Centre of Expertise Greater Sendai Using Education for Sustainable Development-Based Social Learning," Sustainability, MDPI, vol. 4(7), pages 1-26, July.
    5. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    6. Joanna Rucińska & Anna Komerska & Jerzy Kwiatkowski, 2020. "Preliminary Study on the GWP Benchmark of Office Buildings in Poland Using the LCA Approach," Energies, MDPI, vol. 13(13), pages 1-18, June.
    7. Svjetlana Janković Šoja & Ana Anokić & Dana Bucalo Jelić & Radojka Maletić, 2016. "Ranking EU Countries According to Their Level of Success in Achieving the Objectives of the Sustainable Development Strategy," Sustainability, MDPI, vol. 8(4), pages 1-10, March.
    8. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    9. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    10. Dixit, Manish K. & Culp, Charles H. & Fernández-Solís, Jose L., 2013. "System boundary for embodied energy in buildings: A conceptual model for definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 153-164.
    11. Emilia Conte, 2018. "The Era of Sustainability: Promises, Pitfalls and Prospects for Sustainable Buildings and the Built Environment," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    12. Jiarui Liu & Azusa Oita & Kentaro Hayashi & Kazuyo Matsubae, 2022. "Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint," Sustainability, MDPI, vol. 14(2), pages 1-18, January.
    13. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    14. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    15. Man Yu & Anthony Halog, 2015. "Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study," Sustainability, MDPI, vol. 7(2), pages 1-35, January.
    16. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    17. Benedetta Nucci & Fabio Iraldo, 2015. "Comparative life cycle assessment of four insulating boards made with natural and recycled materials," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2015(3), pages 71-88.
    18. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    19. Latifah Abdul Ghani & Ilyanni Syazira Nazaran & Nora’aini Ali & Marlia Mohd Hanafiah, 2020. "Improving Prediction Accuracy of Socio-Human Relationships in a Small-Scale Desalination Plant," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    20. Asterios Stroumpoulis & Evangelia Kopanaki & George Karaganis, 2021. "Examining the Relationship between Information Systems, Sustainable SCM, and Competitive Advantage," Sustainability, MDPI, vol. 13(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:6:p:7904-7925:d:51423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.