IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i5p5773-5792d49343.html
   My bibliography  Save this article

A Review of China’s Rural Water Management

Author

Listed:
  • Xiaoman Yu

    (Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Yong Geng

    (Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    These authors contributed equally to this work.)

  • Peter Heck

    (Institute for Applied Material Flow Management, University of Applied Sciences Trier, Neubrücke 55768, Germany
    These authors contributed equally to this work.)

  • Bing Xue

    (Key Lab of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Institute for Advanced Sustainability Studies (IASS) Potsdam, Potsdam 14467, Germany)

Abstract

With less than 6% of total global water resources but one fifth of the global population, China is facing serious challenges for its water resources management, particularly in rural areas due to the long-standing urban-rural dualistic structure and the economic-centralized developmental policies. This paper addresses the key water crises in rural China including potable water supply, wastewater treatment and disposal, water for agricultural purposes, and environmental concerns, and then analyzes the administrative system on water resources from the perspective of characteristics of the current administrative system and regulations; finally, synthetic approaches to solve water problems in rural China are proposed with regard to institutional reform, regulation revision, economic instruments, technology innovation and capacity-building. These recommendations provide valuable insights to water managers in rural China so that they can identify the most appropriate pathways for optimizing their water resources, reducing the total wastewater discharge and improving their water-related ecosystem.

Suggested Citation

  • Xiaoman Yu & Yong Geng & Peter Heck & Bing Xue, 2015. "A Review of China’s Rural Water Management," Sustainability, MDPI, vol. 7(5), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:5:p:5773-5792:d:49343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/5/5773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/5/5773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Hong & Zhang, Xiaohe & Zehnder, Alexander J. B., 2003. "Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture," Agricultural Water Management, Elsevier, vol. 61(2), pages 143-161, June.
    2. Hong Yang & Jim A. Wright & Stephen W. Gundry, 2012. "Boost water safety in rural China," Nature, Nature, vol. 484(7394), pages 318-318, April.
    3. Al-Lahham, O. & El Assi, N. M. & Fayyad, M., 2003. "Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit," Agricultural Water Management, Elsevier, vol. 61(1), pages 51-62, June.
    4. Wanshun Zhang & Yan Wang & Hong Peng & Yiting Li & Jushan Tang & K. Wu, 2010. "A Coupled Water Quantity–Quality Model for Water Allocation Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 485-511, February.
    5. Blanke, Amelia & Rozelle, Scott & Lohmar, Bryan & Wang, Jinxia & Huang, Jikun, 2007. "Water saving technology and saving water in China," Agricultural Water Management, Elsevier, vol. 87(2), pages 139-150, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Wangyang, 2017. "Pesticide use and health outcomes: Evidence from agricultural water pollution in China," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 93-120.
    2. Liu, Gengyuan & Du, Shupan & Gao, Yuan & Xiong, Xiaoping & Lombardi, Ginevra Virginia & Meng, Fanxin & Chen, Yu & Chen, Caocao, 2024. "A study on energy-water-food-carbon nexus in typical Chinese northern rural households," Energy Policy, Elsevier, vol. 188(C).
    3. Jauda R. Jouda Hamad & Marlia M. Hanafiah & Wan Zuhairi W. Yaakob, 2017. "Water Resources Management In Libya: Challenges And Future Prospects," Malaysian Journal of Sustainable Agriculture (MJSA), Zibeline International Publishing, vol. 1(2), pages 2-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    2. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    3. Qiu, Guo Yu & Zhang, Xiaonan & Yu, Xiaohui & Zou, Zhendong, 2018. "The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain," Agricultural Water Management, Elsevier, vol. 203(C), pages 138-150.
    4. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    5. Morey Burnham & Zhao Ma & Delan Zhu, 2015. "The human dimensions of water saving irrigation: lessons learned from Chinese smallholder farmers," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 347-360, June.
    6. Basil Manos & Thomas Bournaris & Mohd Kamruzzaman & Moss Begum & Ara Anjuman & Jason Papathanasiou, 2006. "Regional Impact of Irrigation Water Pricing in Greece under Alternative Scenarios of European Policy: A Multicriteria Analysis," Regional Studies, Taylor & Francis Journals, vol. 40(9), pages 1055-1068.
    7. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    8. Taboada, Cristal & Mamani, Armando & Raes, Dirk & Mathijs, Erik & Garcia, Magalí & Geerts, Sam & Gilles, Jere, 2011. "Farmers’ willingness to adopt irrigation for quinoa in communities of the Central Altiplano of Bolivia," Revista Latinoamericana de Desarrollo Economico, Carrera de Economía de la Universidad Católica Boliviana (UCB) "San Pablo", issue 16, pages 7-28, Noviembre.
    9. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    10. Chen, Dan & Webber, Michael & Chen, Jing & Luo, Zhaohui, 2011. "Emergy evaluation perspectives of an irrigation improvement project proposal in China," Ecological Economics, Elsevier, vol. 70(11), pages 2154-2162, September.
    11. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Kuhn, L. & Hou, L. & Chen, X. & Huang, J., 2018. "Agricultural machinery for cleaner air An analysis of the effectiveness of three policy measures for reducing residue burning in Northern China," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277374, International Association of Agricultural Economists.
    13. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    14. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    15. Tianyi Zhang & Jinxia Wang & Yishu Teng, 2017. "Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    16. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    17. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    18. Smith, Steven M., 2018. "Economic incentives and conservation: Crowding-in social norms in a groundwater commons," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 147-174.
    19. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Zafar Iqbal Khan & Rehan Haider & Kafeel Ahmad & Muhammad Nadeem & Asma Ashfaq & Abdulwahed Fahad Alrefaei & Mikhlid H. Almutairi & Naunain Mehmood & Aima Iram Batool & Hafsa Memona & Ijaz Rasool Noor, 2023. "Evaluation of Cu, Zn, Fe, and Mn Concentrations in Water, Soil, and Fruit Samples in Sargodha District, Pakistan," Sustainability, MDPI, vol. 15(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:5:p:5773-5792:d:49343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.