IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v402y2019icp1-17.html
   My bibliography  Save this article

Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective

Author

Listed:
  • Yu, Yantuan
  • Huang, Jianhuan
  • Zhang, Ning

Abstract

It is important to investigate the sustainability nexus using composite ecological efficiency (eco-efficiency) indicators from quantitative and computational modeling perspectives. To provide a more comprehensive measure of eco-efficiency, this paper develops three data envelopment analysis (DEA) models incorporating metafrontier and undesirable outputs into a slacks-based measure (SBM), an epsilon-based measure (EBM), and minimum distance to weak efficient frontier (MinDW), respectively, named Meta-U-SBM, Meta-U-EBM, and Meta-U-MinDW. We show theoretically: if a decision-making unit (DMU) is being Meta-U-SBM-efficient, it is also being Meta-U-EBM-efficient and Meta-U-MinDW-efficient, and vice versa. For each DMU, its score measured by Meta-U-MinDW is the highest, while its score measured by Meta-U-SBM is the lowest. Using the proposed models, we make a first empirical attempt at measuring the eco-efficiency of the Key Environmental Protection prefecture-level cities in China from 2003 to 2015. The results show that: (1) the eco-efficiency of eastern cities performs the best, followed by central cities and western cities. Cities not listed as resource-based (RB) outperform RB cities; (2) eastern cities are closer to metafrontier than central and western cities; and (3) efficiency change and technological progress dominate the basic trend of the eco-efficiency growth. Results derived from the proposed methodologies can help managers and policymakers in the city to assess sustainability development quantitatively and comprehensively, they can also provide implications for the environmental management of sustainability development at city level. Policy implementations are presented based on the empirical results.

Suggested Citation

  • Yu, Yantuan & Huang, Jianhuan & Zhang, Ning, 2019. "Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective," Ecological Modelling, Elsevier, vol. 402(C), pages 1-17.
  • Handle: RePEc:eee:ecomod:v:402:y:2019:i:c:p:1-17
    DOI: 10.1016/j.ecolmodel.2019.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    2. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    3. Zaim, Osman, 2004. "Measuring environmental performance of state manufacturing through changes in pollution intensities: a DEA framework," Ecological Economics, Elsevier, vol. 48(1), pages 37-47, January.
    4. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    5. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    6. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    7. Timo Kuosmanen, 2005. "Measurement and Analysis of Eco‐efficiency: An Economist's Perspective," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 15-18, October.
    8. Kaoru Tone & Miki Tsutsui, 2010. "An epsilon-based measure of efficiency in DEA revisited -A third pole of technical efficiency," GRIPS Discussion Papers 09-21, National Graduate Institute for Policy Studies.
    9. Weibin Lin & Bin Chen & Lina Xie & Haoran Pan, 2015. "Estimating Energy Consumption of Transport Modes in China Using DEA," Sustainability, MDPI, vol. 7(4), pages 1-15, April.
    10. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    11. George E. Halkos & Nickolaos G. Tzeremes & Stavros A. Kourtzidis, 2016. "Measuring Sustainability Efficiency Using a Two-Stage Data Envelopment Analysis Approach," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1159-1175, October.
    12. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    13. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    14. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    15. Dong-hyun Oh & Jeong-dong Lee, 2010. "A metafrontier approach for measuring Malmquist productivity index," Empirical Economics, Springer, vol. 38(1), pages 47-64, February.
    16. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    17. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    18. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    19. W. Briec, 1999. "Hölder Distance Function and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 11(2), pages 111-131, April.
    20. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    21. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    22. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    23. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    24. Guoping Mei & Jingyi Gan & Ning Zhang, 2015. "Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    25. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    26. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    27. Ling Wang & Zhongchang Chen & Dalai Ma & Pei Zhao, 2013. "Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis," Sustainability, MDPI, vol. 5(12), pages 1-14, December.
    28. Hoang, Viet-Ngu & Nguyen, Trung Thanh, 2013. "Analysis of environmental efficiency variations: A nutrient balance approach," Ecological Economics, Elsevier, vol. 86(C), pages 37-46.
    29. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    30. Mahlberg, Bernhard & Luptacik, Mikulas, 2014. "Eco-efficiency and eco-productivity change over time in a multisectoral economic system," European Journal of Operational Research, Elsevier, vol. 234(3), pages 885-897.
    31. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    32. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    33. Kontolaimou, Alexandra & Tsekouras, Kostas, 2010. "Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1946-1957, August.
    34. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    35. Asmild, Mette & Zhu, Minyan, 2016. "Controlling for the use of extreme weights in bank efficiency assessments during the financial crisis," European Journal of Operational Research, Elsevier, vol. 251(3), pages 999-1015.
    36. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    37. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    38. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, October.
    39. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    40. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    41. Li, Wanghong & Li, Zhepeng & Liang, Liang & Cook, Wade D., 2017. "Evaluation of ecological systems and the recycling of undesirable outputs: An efficiency study of regions in China," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 77-86.
    42. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    43. WU, Jidong & LI, Ning & SHI, Peijun, 2014. "Benchmark wealth capital stock estimations across China's 344 prefectures: 1978 to 2012," China Economic Review, Elsevier, vol. 31(C), pages 288-302.
    44. Lenzen, Manfred & Murray, Shauna A., 2001. "A modified ecological footprint method and its application to Australia," Ecological Economics, Elsevier, vol. 37(2), pages 229-255, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    2. Muhammad, Sulaman & Pan, Yanchun & Agha, Mujtaba Hassan & Umar, Muhammad & Chen, Siyuan, 2022. "Industrial structure, energy intensity and environmental efficiency across developed and developing economies: The intermediary role of primary, secondary and tertiary industry," Energy, Elsevier, vol. 247(C).
    3. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    4. Ramin Gharizadeh Beiragh & Reza Alizadeh & Saeid Shafiei Kaleibari & Fausto Cavallaro & Sarfaraz Hashemkhani Zolfani & Romualdas Bausys & Abbas Mardani, 2020. "An integrated Multi-Criteria Decision Making Model for Sustainability Performance Assessment for Insurance Companies," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    5. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    6. Rui Wang & Bing Xia & Suocheng Dong & Yu Li & Zehong Li & Duoxun Ba & Wenbiao Zhang, 2020. "Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    7. Yongrok Choi & Yunning Ma & Yu Zhao & Hyoungsuk Lee, 2023. "Inequality in Fossil Fuel Power Plants in China: A Perspective of Efficiency and Abatement Cost," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    8. Wei Xu & Jiahui Yi & Jinhua Cheng, 2022. "The Heterogeneity of High-Quality Economic Development in China’s Mining Cities: A Meta Frontier Function," IJERPH, MDPI, vol. 19(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Yu, Yantuan & Peng, Chong & Li, Yushuang, 2019. "Do neighboring prefectures matter in promoting eco-efficiency? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 456-465.
    3. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    4. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    5. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    6. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    7. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    8. Kounetas, Konstantinos & Stergiou, Eirini, 2020. "European industrial eco-efficiency under different pollutants' scenarios and heterogeneity structures. Is there a definite direction?," MPRA Paper 98583, University Library of Munich, Germany.
    9. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    10. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    11. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    12. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    13. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    14. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    15. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    16. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    17. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Examining eco-efficiency convergence of European Industries.The existence of technological spillovers within a metafrontier framework," MPRA Paper 94286, University Library of Munich, Germany.
    18. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    19. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    20. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:402:y:2019:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.