IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i4p3528-3570d47338.html
   My bibliography  Save this article

Soil Degradation in India: Challenges and Potential Solutions

Author

Listed:
  • Ranjan Bhattacharyya

    (Centre for Environment Science & Climate Resilient Agriculture, NRL Building, Indian Agricultural Research Institute, New Delhi 110 012, India)

  • Birendra Nath Ghosh

    (Central Soil & water Conservation Research & Training Institute, Dehradun 248 195, India)

  • Prasanta Kumar Mishra

    (Central Soil & water Conservation Research & Training Institute, Dehradun 248 195, India)

  • Biswapati Mandal

    (Bidhan Chandra Krishi Viswa-Vidayala, Kalyani, West Bengal 741 235, India)

  • Cherukumalli Srinivasa Rao

    (Central Research Institute on Dryland Agriculture, Hyderabad, Telangana 500 059, India)

  • Dibyendu Sarkar

    (ICAR Research Complex for North Eastern Hill Region, Imphal, Manipur 795 004, India)

  • Krishnendu Das

    (National Bureau of Soil Survey & Land Use Planning, Kolkata Regional Center, Kolkata 700 091, India)

  • Kokkuvayil Sankaranarayanan Anil

    (National Bureau of Soil Survey & Land Use Planning, Bangalore Regional Center, Bangalore 560 024, India)

  • Manickam Lalitha

    (National Bureau of Soil Survey & Land Use Planning, Bangalore Regional Center, Bangalore 560 024, India)

  • Kuntal Mouli Hati

    (Division of Soil Physics, Indian Institute of Soil Science, Bhopal 462 038, India)

  • Alan Joseph Franzluebbers

    (USDA-ARS, Plant Science Research Unit, Raleigh, NC 27695, USA)

Abstract

Soil degradation in India is estimated to be occurring on 147 million hectares (Mha) of land, including 94 Mha from water erosion, 16 Mha from acidification, 14 Mha from flooding, 9 Mha from wind erosion, 6 Mha from salinity, and 7 Mha from a combination of factors. This is extremely serious because India supports 18% of the world’s human population and 15% of the world’s livestock population, but has only 2.4% of the world’s land area. Despite its low proportional land area, India ranks second worldwide in farm output. Agriculture, forestry, and fisheries account for 17% of the gross domestic product and employs about 50% of the total workforce of the country. Causes of soil degradation are both natural and human-induced. Natural causes include earthquakes, tsunamis, droughts, avalanches, landslides, volcanic eruptions, floods, tornadoes, and wildfires. Human-induced soil degradation results from land clearing and deforestation, inappropriate agricultural practices, improper management of industrial effluents and wastes, over-grazing, careless management of forests, surface mining, urban sprawl, and commercial/industrial development. Inappropriate agricultural practices include excessive tillage and use of heavy machinery, excessive and unbalanced use of inorganic fertilizers, poor irrigation and water management techniques, pesticide overuse, inadequate crop residue and/or organic carbon inputs, and poor crop cycle planning. Some underlying social causes of soil degradation in India are land shortage, decline in per capita land availability, economic pressure on land, land tenancy, poverty, and population increase. In this review of land degradation in India, we summarize (1) the main causes of soil degradation in different agro-climatic regions; (2) research results documenting both soil degradation and soil health improvement in various agricultural systems; and (3) potential solutions to improve soil health in different regions using a variety of conservation agricultural approaches.

Suggested Citation

  • Ranjan Bhattacharyya & Birendra Nath Ghosh & Prasanta Kumar Mishra & Biswapati Mandal & Cherukumalli Srinivasa Rao & Dibyendu Sarkar & Krishnendu Das & Kokkuvayil Sankaranarayanan Anil & Manickam Lali, 2015. "Soil Degradation in India: Challenges and Potential Solutions," Sustainability, MDPI, vol. 7(4), pages 1-43, March.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3528-3570:d:47338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/4/3528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/4/3528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharyya, R. & Kundu, S. & Pandey, S.C. & Singh, K.P. & Gupta, H.S., 2008. "Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas," Agricultural Water Management, Elsevier, vol. 95(9), pages 993-1002, September.
    2. Joshi, P. K. & Agnihotri, A. K., 1984. "An Assessment of the Adverse Effects of Canal Irrigation in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 39(3), July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajeev Kumar Gupta & Jagroop Kaur & Jasjit Singh Kang & Harmeet Singh & Sukhveer Kaur & Samy Sayed & Ahmed Gaber & Akbar Hossain, 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties," Land, MDPI, vol. 11(10), pages 1-18, September.
    2. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    3. Chinnappa, B. & Nagaraj, N., 2007. "An Economic Analysis of Public Interventions for Amelioration of Irrigation-Induced Soil Degradation," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 20(2).
    4. Agbai & Williams Perekekeme & Tate Joseph Oyinbrakemi, 2022. "The Short Term Effect Of Tillage System On Soil Moisture Retention In Bayelsa State, Nigeria," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 45-52, October.
    5. Shilai Zhang & Guangfu Huang & Yujiao Zhang & Xiutao Lv & Kejiang Wan & Jian Liang & Yupeng Feng & Jinrong Dao & Shukang Wu & Lin Zhang & Xu Yang & Xiaoping Lian & Liyu Huang & Lin Shao & Jing Zhang &, 2023. "Sustained productivity and agronomic potential of perennial rice," Nature Sustainability, Nature, vol. 6(1), pages 28-38, January.
    6. Kieu N. Le & Manoj K. Jha & Jaehak Jeong & Philip W. Gassman & Manuel R. Reyes & Luca Doro & Dat Q. Tran & Lyda Hok, 2018. "Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    7. Agarwal, Bina, 1997. "Gender, environment, and poverty interlinks: Regional variations and temporal shifts in rural India, 1971-1991," World Development, Elsevier, vol. 25(1), pages 23-52, January.
    8. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    9. Ranjan Bhattacharyya & Birendra Nath Ghosh & Pradeep Dogra & Prasanta Kumar Mishra & Priyabrata Santra & Suresh Kumar & Michael Augustine Fullen & Uttam Kumar Mandal & Kokkuvayil Sankaranarayanan Anil, 2016. "Soil Conservation Issues in India," Sustainability, MDPI, vol. 8(6), pages 1-37, June.
    10. Roxana Piastrellini & Bárbara María Civit & Alejandro P. Arena, 2015. "Influence of Agricultural Practices on Biotic Production Potential and Climate Regulation Potential. A Case Study for Life Cycle Assessment of Soybean ( Glycine max ) in Argentina," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    11. N. Tangyuan & H. Bin & J. Nianyuan & T. Shenzhong & L. Zengjia, 2009. "Effects of conservation tillage on soil porosity in maize-wheat cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(8), pages 327-333.
    12. Janmaat, John, 2005. "Water applications and Pigouvian taxes to control irrigation-induced soil degradation," Journal of Development Economics, Elsevier, vol. 76(1), pages 209-230, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3528-3570:d:47338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.