IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i9p993-1002.html
   My bibliography  Save this article

Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas

Author

Listed:
  • Bhattacharyya, R.
  • Kundu, S.
  • Pandey, S.C.
  • Singh, K.P.
  • Gupta, H.S.

Abstract

Conservation tillage systems generally improve soil organic C (SOC), plant available water capacity (PAWC), aggregation and soil water transmission. A field experiment was conducted for 4 years (2001-2002 to 2004-2005) to study tillage (conventional tillage (CT) and zero tillage (ZT)) systems. The selected irrigation treatments were at four levels (I1: pre-sowing (PS), I2: PS + active tillering (AT)/crown root initiation (CRI), I3: PS + AT/CRI + panicle initiation (PI)/flowering (FL), and I4: PS + AT/CRI + PI/FL + grain filling (GF)), applied at the critical growth stages on rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Their effects on direct seeded rice productivity and soil properties (SOC and selected physical properties) after rice and wheat harvest were investigated. Soil organic C contents after rice and wheat harvest in the 0-15 cm soil depth were higher under ZT than under CT. Soil organic C increased significantly with I2 over I1 for both crops and with I4 over I2 for the wheat crop. The PAWC was significantly higher with ZT than CT. Zero tilled and frequently irrigated plots showed enhanced infiltration characteristics (infiltration rate, cumulative infiltration and sorptivity) and saturated hydraulic conductivity. Both direct seeded rice and wheat yields were not significantly different in the plots under ZT and CT. There was a significant increase in both rice and wheat yields in the plots under I2 over I1. However, water use efficiency between irrigation treatments was not significantly different. Hence, under direct seeded rice-wheat system in a sandy clay loam soil of the sub-temperate Indian Himalayas, farmers may adopt ZT with two irrigations in each crop for optimum resource conservation.

Suggested Citation

  • Bhattacharyya, R. & Kundu, S. & Pandey, S.C. & Singh, K.P. & Gupta, H.S., 2008. "Tillage and irrigation effects on crop yields and soil properties under the rice-wheat system in the Indian Himalayas," Agricultural Water Management, Elsevier, vol. 95(9), pages 993-1002, September.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:9:p:993-1002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00084-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjan Bhattacharyya & Birendra Nath Ghosh & Pradeep Dogra & Prasanta Kumar Mishra & Priyabrata Santra & Suresh Kumar & Michael Augustine Fullen & Uttam Kumar Mandal & Kokkuvayil Sankaranarayanan Anil, 2016. "Soil Conservation Issues in India," Sustainability, MDPI, vol. 8(6), pages 1-37, June.
    2. Rajeev Kumar Gupta & Jagroop Kaur & Jasjit Singh Kang & Harmeet Singh & Sukhveer Kaur & Samy Sayed & Ahmed Gaber & Akbar Hossain, 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties," Land, MDPI, vol. 11(10), pages 1-18, September.
    3. Roxana Piastrellini & Bárbara María Civit & Alejandro P. Arena, 2015. "Influence of Agricultural Practices on Biotic Production Potential and Climate Regulation Potential. A Case Study for Life Cycle Assessment of Soybean ( Glycine max ) in Argentina," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    4. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    5. Shilai Zhang & Guangfu Huang & Yujiao Zhang & Xiutao Lv & Kejiang Wan & Jian Liang & Yupeng Feng & Jinrong Dao & Shukang Wu & Lin Zhang & Xu Yang & Xiaoping Lian & Liyu Huang & Lin Shao & Jing Zhang &, 2023. "Sustained productivity and agronomic potential of perennial rice," Nature Sustainability, Nature, vol. 6(1), pages 28-38, January.
    6. Le, Kieu N. & Jeong, Jaehak & Reyes, Manuel R. & Jha, Manoj K. & Gassman, Philip W. & Doro, Luca & Hok, Lyda & Boulakia, Stéphane, 2018. "Evaluation of the performance of the EPIC model for yield and biomass simulation under conservation systems in Cambodia," Agricultural Systems, Elsevier, vol. 166(C), pages 90-100.
    7. N. Tangyuan & H. Bin & J. Nianyuan & T. Shenzhong & L. Zengjia, 2009. "Effects of conservation tillage on soil porosity in maize-wheat cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 55(8), pages 327-333.
    8. Ranjan Bhattacharyya & Birendra Nath Ghosh & Prasanta Kumar Mishra & Biswapati Mandal & Cherukumalli Srinivasa Rao & Dibyendu Sarkar & Krishnendu Das & Kokkuvayil Sankaranarayanan Anil & Manickam Lali, 2015. "Soil Degradation in India: Challenges and Potential Solutions," Sustainability, MDPI, vol. 7(4), pages 1-43, March.
    9. Kieu N. Le & Manoj K. Jha & Jaehak Jeong & Philip W. Gassman & Manuel R. Reyes & Luca Doro & Dat Q. Tran & Lyda Hok, 2018. "Evaluation of Long-Term SOC and Crop Productivity within Conservation Systems Using GFDL CM2.1 and EPIC," Sustainability, MDPI, vol. 10(8), pages 1-17, July.
    10. Agbai & Williams Perekekeme & Tate Joseph Oyinbrakemi, 2022. "The Short Term Effect Of Tillage System On Soil Moisture Retention In Bayelsa State, Nigeria," Journal of Wastes and Biomass Management (JWBM), Zibeline International Publishing, vol. 4(1), pages 45-52, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:9:p:993-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.