IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i10p13222-13248d56439.html
   My bibliography  Save this article

Development of Benchmarks for Operating Costs and Resources Consumption to be Used in Healthcare Building Sustainability Assessment Methods

Author

Listed:
  • Maria De Fátima Castro

    (Territory, Environmental and Construction Research Centre (CTAC), University of Minho, Campus de Azurém, 4800-048 Guimarães, Portugal)

  • Ricardo Mateus

    (Territory, Environmental and Construction Research Centre (CTAC), University of Minho, Campus de Azurém, 4800-048 Guimarães, Portugal)

  • Francisco Serôdio

    (Territory, Environmental and Construction Research Centre (CTAC), University of Minho, Campus de Azurém, 4800-048 Guimarães, Portugal)

  • Luís Bragança

    (Territory, Environmental and Construction Research Centre (CTAC), University of Minho, Campus de Azurém, 4800-048 Guimarães, Portugal)

Abstract

Since the last decade of the twentieth century, the healthcare industry is paying attention to the environmental impact of their buildings and therefore new regulations, policy goals, and Building Sustainability Assessment (HBSA) methods are being developed and implemented. At the present, healthcare is one of the most regulated industries and it is also one of the largest consumers of energy per net floor area. To assess the sustainability of healthcare buildings it is necessary to establish a set of benchmarks related with their life-cycle performance. They are both essential to rate the sustainability of a project and to support designers and other stakeholders in the process of designing and operating a sustainable building, by allowing the comparison to be made between a project and the conventional and best market practices. This research is focused on the methodology to set the benchmarks for resources consumption, waste production, operation costs and potential environmental impacts related to the operational phase of healthcare buildings. It aims at contributing to the reduction of the subjectivity found in the definition of the benchmarks used in Building Sustainability Assessment (BSA) methods, and it is applied in the Portuguese context. These benchmarks will be used in the development of a Portuguese HBSA method.

Suggested Citation

  • Maria De Fátima Castro & Ricardo Mateus & Francisco Serôdio & Luís Bragança, 2015. "Development of Benchmarks for Operating Costs and Resources Consumption to be Used in Healthcare Building Sustainability Assessment Methods," Sustainability, MDPI, vol. 7(10), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13222-13248:d:56439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/10/13222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/10/13222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murray, Joe & Pahl, O. & Burek, S., 2008. "Evaluating the scope for energy-efficiency improvements in the public sector: Benchmarking NHSScotland's smaller health buildings," Energy Policy, Elsevier, vol. 36(3), pages 1236-1242, March.
    2. Gabriel Wurzer, 2013. "In-process agent simulation for early stages of hospital planning," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(4), pages 331-343.
    3. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    4. Bromley, Elizabeth, 2012. "Building patient-centeredness: Hospital design as an interpretive act," Social Science & Medicine, Elsevier, vol. 75(6), pages 1057-1066.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sungmin Yun & Wooyong Jung, 2017. "Benchmarking Sustainability Practices Use throughout Industrial Construction Project Delivery," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
    2. Ana Fonseca & Isabel Abreu & Maria João Guerreiro & Cristina Abreu & Ricardo Silva & Nelson Barros, 2018. "Indoor Air Quality and Sustainability Management—Case Study in Three Portuguese Healthcare Units," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    3. Guangdong Wu & Guofeng Qiang & Jian Zuo & Xianbo Zhao & Ruidong Chang, 2018. "What are the Key Indicators of Mega Sustainable Construction Projects? —A Stakeholder-Network Perspective," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    4. Helena Gervasio & Silvia Dimova & Artur Pinto, 2018. "Benchmarking the Life-Cycle Environmental Performance of Buildings," Sustainability, MDPI, vol. 10(5), pages 1-30, May.
    5. Kwok Tai Chui & Wadee Alhalabi & Sally Shuk Han Pang & Patricia Ordóñez de Pablos & Ryan Wen Liu & Mingbo Zhao, 2017. "Disease Diagnosis in Smart Healthcare: Innovation, Technologies and Applications," Sustainability, MDPI, vol. 9(12), pages 1-23, December.
    6. Yijia Miao & Doris Sau Fung Yu & Weiguang Tan & Sunnie Sing Yeung Lau & Stephen Siu Yu Lau & Yiqi Tao, 2024. "Crafting Sustainable Healthcare Environments Using Green Building Ratings for Aging Societies," Sustainability, MDPI, vol. 16(5), pages 1-22, February.
    7. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    8. David Naranjo-Gil, 2016. "The Role of Management Control Systems and Top Teams in Implementing Environmental Sustainability Policies," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    9. Anna Maria Ferrari & Lucrezia Volpi & Martina Pini & Cristina Siligardi & Fernando Enrique García-Muiña & Davide Settembre-Blundo, 2019. "Building a Sustainability Benchmarking Framework of Ceramic Tiles Based on Life Cycle Sustainability Assessment (LCSA)," Resources, MDPI, vol. 8(1), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    2. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    3. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    4. Lee, Wen-Shing & Kung, Chung-Kuan, 2011. "Using climate classification to evaluate building energy performance," Energy, Elsevier, vol. 36(3), pages 1797-1801.
    5. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    7. Li, Xinyi & Yao, Runming & Li, Qin & Ding, Yong & Li, Baizhan, 2018. "An object-oriented energy benchmark for the evaluation of the office building stock," Utilities Policy, Elsevier, vol. 51(C), pages 1-11.
    8. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    9. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2016. "Development of a statistical analysis model to benchmark the energy use intensity of subway stations," Applied Energy, Elsevier, vol. 179(C), pages 488-496.
    10. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    12. Kreuzer, Maria & Cado, Vesna & Raïes, Karine, 2020. "Moments of care: How interpersonal interactions contribute to luxury experiences of healthcare consumers," Journal of Business Research, Elsevier, vol. 116(C), pages 482-490.
    13. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    14. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    15. Yang, Le & Xia, Jianjun & Shen, Qi, 2016. "Establishing target-oriented energy consumption quotas for buildings," Utilities Policy, Elsevier, vol. 41(C), pages 57-66.
    16. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    17. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    18. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    19. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    20. Liang, Xin & Hong, Tianzhen & Shen, Geoffrey Qiping, 2016. "Improving the accuracy of energy baseline models for commercial buildings with occupancy data," Applied Energy, Elsevier, vol. 179(C), pages 247-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:10:p:13222-13248:d:56439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.