IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i12p9231-9243d43481.html
   My bibliography  Save this article

Empirical Evaluation of the Effect of Heat Gain from Fiber Optic Daylighting System on Tropical Building Interiors

Author

Listed:
  • Muhammad Arkam C. Munaaim

    (School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
    These authors contributed equally to this work.)

  • Karam M. Al-Obaidi

    (School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
    These authors contributed equally to this work.)

  • Mohd Rodzi Ismail

    (School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
    These authors contributed equally to this work.)

  • Abdul Malek Abdul Rahman

    (School of Housing, Building and Planning, Universiti Sains Malaysia, 11800 Penang, Malaysia
    These authors contributed equally to this work.)

Abstract

A fiber optic daylighting system is an evolving technology for transporting illumination from sunlight into building interiors. This system is a solution developed by daylighting designers to reduce operational costs and enhance comfort. As an innovative technology, fiber optic daylighting systems can illuminate building interiors efficiently compared with other daylighting strategies. However, as a transmission medium in daylighting systems, optical fibers require uniform light distribution in sunlight concentration, which could generate heat. Therefore, this study aims to investigate the effect of heat buildup produced by end-emitting fiber optic daylighting systems in tropical buildings. The applied method adopts a new fiber optic daylighting system technology from Sweden called Parans SP3, with a 10 m cable to be tested in an actual room size under the Malaysian climatic environment, particularly within the vicinity of the main campus of the Universiti Sains Malaysia. Results show that the system generated a temperature of 1.3 °C under average conditions through fiber optic diffusers and increases indoor temperature by 0.8 °C in a 60 m 3 room. According to the results, applying fiber optic daylighting systems, as renewable energy sources, generates extra heat gain in building interiors in the tropics.

Suggested Citation

  • Muhammad Arkam C. Munaaim & Karam M. Al-Obaidi & Mohd Rodzi Ismail & Abdul Malek Abdul Rahman, 2014. "Empirical Evaluation of the Effect of Heat Gain from Fiber Optic Daylighting System on Tropical Building Interiors," Sustainability, MDPI, vol. 6(12), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:9231-9243:d:43481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/12/9231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/12/9231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irfan Ullah & Allen Jong-Woei Whang, 2015. "Development of Optical Fiber-Based Daylighting System and Its Comparison," Energies, MDPI, vol. 8(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    2. Kunhao Liu & Lianglin Zou & Yuanlong Li & Kai Wang & Haiyu Wang & Jifeng Song, 2023. "Measurement and Analysis of Light Leakage in Plastic Optical Fiber Daylighting System," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    3. Jifeng Song & Bizuayehu Bogale Dessie & Longyu Gao, 2023. "Analysis and Comparison of Daylighting Technologies: Light Pipe, Optical Fiber, and Heliostat," Sustainability, MDPI, vol. 15(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    2. Li, Xiujie & Wei, Yeyan & Zhang, Junbin & Jin, Peng, 2019. "Design and analysis of an active daylight harvesting system for building," Renewable Energy, Elsevier, vol. 139(C), pages 670-678.
    3. Sreelakshmi, Kavuthimadathil & Ramamurthy, K., 2022. "Review on fibre-optic-based daylight enhancement systems in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Xia, Longyu & Wei, Gaosheng & Wang, Gang & Cui, Liu & Du, Xiaoze, 2023. "Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology," Applied Energy, Elsevier, vol. 333(C).
    5. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    6. Chong, Kok-Keong & Onubogu, Nneka Obianuju & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Woei-Chong, 2017. "Design and construction of active daylighting system using two-stage non-imaging solar concentrator," Applied Energy, Elsevier, vol. 207(C), pages 45-60.
    7. Talebzadeh, Nima & Rostami, Mohsen & O’Brien, Paul G., 2021. "Elliptic paraboloid-based solar spectrum splitters for self-powered photobioreactors," Renewable Energy, Elsevier, vol. 163(C), pages 1773-1785.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:9231-9243:d:43481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.