IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i12p8808-8826d43010.html
   My bibliography  Save this article

Distinguishing Technical Inefficiency from Desirable and Undesirable Congestion with an Application to Regional Industries in China

Author

Listed:
  • Jun Wang

    (School of Management, University of Science and Technology of China, Hefei 230026, China)

  • Yong Zha

    (School of Management, University of Science and Technology of China, Hefei 230026, China)

Abstract

Congestion is an important issue that requires the efficiency of decision-making units (DMUs). We first classify conventional congestion into congestion (newly defined) and technical inefficiency, based on prior research and real applications. Modified definitions and mathematical expression of congestion, managerial inefficiency, and technical inefficiency are proposed to better illustrate the differences between them. Several modified models are provided to identify and recognize those types of inefficiencies and congestion. We then extend the model by considering the desirable and undesirable types of congestion simultaneously. The proposed approach is applied and verified by identifying resource congestion and environmental inefficiencies in China’s economic development.

Suggested Citation

  • Jun Wang & Yong Zha, 2014. "Distinguishing Technical Inefficiency from Desirable and Undesirable Congestion with an Application to Regional Industries in China," Sustainability, MDPI, vol. 6(12), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:8808-8826:d:43010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/12/8808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/12/8808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noura, A.A. & Hosseinzadeh Lotfi, F. & Jahanshahloo, G.R. & Rashidi, S. Fanati & Parker, Barnett R., 2010. "A new method for measuring congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 44(4), pages 240-246, December.
    2. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    3. Pedro Simões & Rui Marques, 2011. "Performance and congestion analysis of the portuguese hospital services," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(1), pages 39-63, March.
    4. Pedro Simões & Rui Cunha Marques, 2009. "Influence of Congestion Efficiency on the European Seaports Performance: Does It Matter?," Transport Reviews, Taylor & Francis Journals, vol. 30(4), pages 517-539, July.
    5. Cooper, W. W. & Deng, Honghui & Huang, Zhimin M. & Li, Susan X., 2002. "A one-model approach to congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 36(4), pages 231-238, December.
    6. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    7. A. T. Flegg & D. O. Allen, 2007. "Does Expansion Cause Congestion? The Case of the Older British Universities, 1994-2004," Education Economics, Taylor & Francis Journals, vol. 15(1), pages 75-102.
    8. Cooper, W. W. & Deng, Honghui & Gu, Bisheng & Li, Shanling & Thrall, R. M., 2001. "Using DEA to improve the management of congestion in Chinese industries (1981-1997)," Socio-Economic Planning Sciences, Elsevier, vol. 35(4), pages 227-242, December.
    9. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    10. Marques, Rui Cunha & Simões, Pedro, 2010. "Measuring the influence of congestion on efficiency in worldwide airports," Journal of Air Transport Management, Elsevier, vol. 16(6), pages 334-336.
    11. Fare, Rolf & Grosskopf, Shawna, 2000. "Slacks and congestion: a comment," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 27-33, March.
    12. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    13. Patrick Brockett & William Cooper & Honghui Deng & Linda Golden & T. Ruefli, 2004. "Using DEA to Identify and Manage Congestion," Journal of Productivity Analysis, Springer, vol. 22(3), pages 207-226, November.
    14. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    15. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    16. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    17. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    18. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    19. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    20. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    21. Jinchao Li & Jinying Li & Fengting Zheng, 2014. "Unified Efficiency Measurement of Electric Power Supply Companies in China," Sustainability, MDPI, vol. 6(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian-tong Ren & Guo-liang Yang, 2024. "Eliminating congestion in China’s papermaking and paper products industry: From both the perspective of increasing and decreasing inputs," Journal of Productivity Analysis, Springer, vol. 61(1), pages 63-82, February.
    2. Caroline Oates & Panayiota Alevizou & Seonaidh McDonald, 2016. "Challenges for Marketers in Sustainable Production and Consumption," Sustainability, MDPI, vol. 8(1), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
    2. Yang, Zhuofan & Shi, Yong & Yan, Hong, 2017. "Analysis on pure e-commerce congestion effect, productivity effect and profitability in China," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 35-49.
    3. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    4. F. Wu & P. Zhou & D. Zhou, 2015. "Measuring Energy Congestion in Chinese Industrial Sectors: A Slacks-Based DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 479-494, October.
    5. Flegg, A.T. & Allen, D.O., 2009. "Congestion in the Chinese automobile and textile industries revisited," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 177-191, September.
    6. Ren, Xian-tong & Fukuyama, Hirofumi & Yang, Guo-liang, 2022. "Eliminating congestion by increasing inputs in R&D activities of Chinese universities," Omega, Elsevier, vol. 110(C).
    7. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    8. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    9. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    10. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    11. Wei, Quanling & Yan, Hong, 2009. "Weak congestion in output additive data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 40-54, March.
    12. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    15. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    16. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    17. Xi Jin & Bin Zou & Chan Wang & Kaifeng Rao & Xiaowen Tang, 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    18. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    19. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
    20. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:8808-8826:d:43010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.