IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v43y2009i1p40-54.html
   My bibliography  Save this article

Weak congestion in output additive data envelopment analysis

Author

Listed:
  • Wei, Quanling
  • Yan, Hong

Abstract

Our earlier work [Wei QL, Yan H. Congestion and returns to scale in data envelopment analysis. European Journal of Operational Research 2004;153:641-60] discussed necessary and sufficient conditions for the existence of congestion together with aspects of returns to scale under an output-oriented DEA framework. In line with this work, the current paper investigates the issue of "weak congestion", wherein congestion occurs when the reduction of selected inputs causes some, rather than all, outputs to increase, without a worsening of others. We define output efficiency for decision making units under a series of typical DEA output additive models. Based on this definition, we offer necessary and sufficient conditions for the existence of weak congestion. Numerical examples are provided for purposes of illustration.

Suggested Citation

  • Wei, Quanling & Yan, Hong, 2009. "Weak congestion in output additive data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 40-54, March.
  • Handle: RePEc:eee:soceps:v:43:y:2009:i:1:p:40-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038-0121(08)00014-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odeck, James, 2006. "Congestion, ownership, region of operation, and scale: Their impact on bus operator performance in Norway," Socio-Economic Planning Sciences, Elsevier, vol. 40(1), pages 52-69, March.
    2. repec:bla:scandj:v:87:y:1985:i:4:p:594-604 is not listed on IDEAS
    3. Cooper, W. W. & Deng, Honghui & Huang, Zhimin M. & Li, Susan X., 2002. "A one-model approach to congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 36(4), pages 231-238, December.
    4. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    5. Cooper, W. W. & Deng, Honghui & Gu, Bisheng & Li, Shanling & Thrall, R. M., 2001. "Using DEA to improve the management of congestion in Chinese industries (1981-1997)," Socio-Economic Planning Sciences, Elsevier, vol. 35(4), pages 227-242, December.
    6. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    7. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    8. Brockett, Patrick L. & Cooper, William W. & Wang, Yuying & Shin, Hong-Chul, 1998. "Inefficiency and congestion in Chinese production before and after the 1978 economic reforms," Socio-Economic Planning Sciences, Elsevier, vol. 32(1), pages 1-20, March.
    9. Patrick Brockett & William Cooper & Honghui Deng & Linda Golden & T. Ruefli, 2004. "Using DEA to Identify and Manage Congestion," Journal of Productivity Analysis, Springer, vol. 22(3), pages 207-226, November.
    10. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    12. Cooper, W. W. & Gu, Bisheng & Li, Shanling, 2001. "Comparisons and evaluations of alternative approaches to the treatment of congestion in DEA," European Journal of Operational Research, Elsevier, vol. 132(1), pages 62-74, July.
    13. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhuofan & Shi, Yong & Yan, Hong, 2017. "Analysis on pure e-commerce congestion effect, productivity effect and profitability in China," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 35-49.
    2. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    3. Ren, Xian-tong & Fukuyama, Hirofumi & Yang, Guo-liang, 2022. "Eliminating congestion by increasing inputs in R&D activities of Chinese universities," Omega, Elsevier, vol. 110(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    2. Yang, Zhuofan & Shi, Yong & Yan, Hong, 2017. "Analysis on pure e-commerce congestion effect, productivity effect and profitability in China," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 35-49.
    3. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    4. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    5. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    6. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    7. Flegg, A.T. & Allen, D.O., 2009. "Congestion in the Chinese automobile and textile industries revisited," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 177-191, September.
    8. Jun Wang & Yong Zha, 2014. "Distinguishing Technical Inefficiency from Desirable and Undesirable Congestion with an Application to Regional Industries in China," Sustainability, MDPI, vol. 6(12), pages 1-19, December.
    9. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    10. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "DEA congestion and returns to scale under an occurrence of multiple optimal projections," European Journal of Operational Research, Elsevier, vol. 194(2), pages 592-607, April.
    11. Pedro Simões & Rui Marques, 2011. "Performance and congestion analysis of the portuguese hospital services," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(1), pages 39-63, March.
    12. Alfonso Mendoza-Velázquez & Francisco Benita, 2019. "Efficiency, Productivity, and Congestion Performance: Analysis of the Automotive Cluster in Mexico," Journal of Industry, Competition and Trade, Springer, vol. 19(4), pages 661-678, December.
    13. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    14. Marques, Rui Cunha & Simões, Pedro, 2010. "Measuring the influence of congestion on efficiency in worldwide airports," Journal of Air Transport Management, Elsevier, vol. 16(6), pages 334-336.
    15. Ren, Xian-tong & Fukuyama, Hirofumi & Yang, Guo-liang, 2022. "Eliminating congestion by increasing inputs in R&D activities of Chinese universities," Omega, Elsevier, vol. 110(C).
    16. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    17. Maryam Shadab & Saber Saati & Reza Farzipoor Saen & Mohammad Khoveyni & Amin Mostafaee, 2021. "Detecting congestion in DEA by solving one model," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 77-96.
    18. Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
    19. Maryam Shadab & Saber Saati & Reza Farzipoor Saen & Mohammad Khoveyni & Amin Mostafaee, 2021. "Detecting congestion in DEA by solving one model," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31(1), pages 77-96.
    20. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:43:y:2009:i:1:p:40-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.