IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i12p8720-8735d42961.html
   My bibliography  Save this article

Biomass Power Generation Industry Efficiency Evaluation in China

Author

Listed:
  • Qingyou Yan

    (School of Economics and Management, North China Electric Power University, No. 2 Bei Nong Road, Beijing 102206, China
    These authors contributed equally to this work.)

  • Jie Tao

    (School of Economics and Management, North China Electric Power University, No. 2 Bei Nong Road, Beijing 102206, China
    These authors contributed equally to this work.)

Abstract

In this paper, we compare the properties of the traditional additive-based data envelopment analysis (hereafter, referred to as DEA) models and propose two generalized DEA models, i.e. , the big M additive-based DEA (hereafter, referred to as BMA) model and the big M additive-based super-efficiency DEA (hereafter, referred to as BMAS) model, to evaluate the performance of the biomass power plants in China in 2012. The virtues of the new models are two-fold: one is that they inherited the properties of the traditional additive-based DEA models and derived more new additive-based DEA forms; the other is that they can rank the efficient decision making units (hereafter, referred to as DMUs). Therefore, the new models have great potential to be applied in sustainable energy project evaluation. Then, we applied the two new DEA models to evaluate the performance of the biomass power plants in China and find that the efficiency of biomass power plants in the northern part of China is higher than that in the southern part of China. The only three efficient biomass power plants are all in the northern part of China. Furthermore, based on the results of the Wilcoxon-Mann-Whitney rank-sum test and the Kolmogorov-Smirnov test, there is a great technology gap between the biomass power plants in the northern part of China and those in the southern part of China.

Suggested Citation

  • Qingyou Yan & Jie Tao, 2014. "Biomass Power Generation Industry Efficiency Evaluation in China," Sustainability, MDPI, vol. 6(12), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:8720-8735:d:42961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/12/8720/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/12/8720/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    2. Weber, Christoph & Perrels, Adriaan, 2000. "Modelling lifestyle effects on energy demand and related emissions," Energy Policy, Elsevier, vol. 28(8), pages 549-566, July.
    3. St. Denis, Genevieve & Parker, Paul, 2009. "Community energy planning in Canada: The role of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2088-2095, October.
    4. Kautto, N. & Peck, P., 2012. "Regional biomass planning – Helping to realise national renewable energy goals?," Renewable Energy, Elsevier, vol. 46(C), pages 23-30.
    5. Perrels, Adriaan & Weber, Christoph, 2000. "Modelling Impacts of Lifestyle on Energy Demand and Related Emissions," Discussion Papers 228, VATT Institute for Economic Research.
    6. Muhittin Oral & Ossama Kettani & Pascal Lang, 1991. "A Methodology for Collective Evaluation and Selection of Industrial R&D Projects," Management Science, INFORMS, vol. 37(7), pages 871-885, July.
    7. Xingang, Zhao & Zhongfu, Tan & Pingkuo, Liu, 2013. "Development goal of 30GW for China’s biomass power generation: Will it be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 310-317.
    8. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    10. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    11. Zhao, Zhen-yu & Yan, Hong, 2012. "Assessment of the biomass power generation industry in China," Renewable Energy, Elsevier, vol. 37(1), pages 53-60.
    12. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    13. Klevas, Valentinas & Streimikiene, Dalia & Grikstaite, Ramute, 2007. "Sustainable energy in Baltic States," Energy Policy, Elsevier, vol. 35(1), pages 76-90, January.
    14. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    15. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    16. Du, Juan & Liang, Liang & Zhu, Joe, 2010. "A slacks-based measure of super-efficiency in data envelopment analysis: A comment," European Journal of Operational Research, Elsevier, vol. 204(3), pages 694-697, August.
    17. William Cooper & Jesús Pastor & Fernando Borras & Juan Aparicio & Diego Pastor, 2011. "BAM: a bounded adjusted measure of efficiency for use with bounded additive models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 85-94, April.
    18. Jinchao Li & Jinying Li & Fengting Zheng, 2014. "Unified Efficiency Measurement of Electric Power Supply Companies in China," Sustainability, MDPI, vol. 6(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Ming Meng & Yanan Fu & Tianyu Wang & Kaiqiang Jing, 2017. "Analysis of Low-Carbon Economy Efficiency of Chinese Industrial Sectors Based on a RAM Model with Undesirable Outputs," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    3. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    4. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2016. "Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach," Sustainability, MDPI, vol. 8(8), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Yan Q. & Jie, Tao, 2016. "A study of the operation efficiency and cost performance indices of power-supply companies in China based on a dynamic network slacks-based measure model," Omega, Elsevier, vol. 60(C), pages 85-97.
    2. Rezaeiani, M.J. & Foroughi, A.A., 2018. "Ranking efficient decision making units in data envelopment analysis based on reference frontier share," European Journal of Operational Research, Elsevier, vol. 264(2), pages 665-674.
    3. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    4. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    5. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    6. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    7. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    8. Tran, Trung Hieu & Mao, Yong & Nathanail, Paul & Siebers, Peer-Olaf & Robinson, Darren, 2019. "Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis," Omega, Elsevier, vol. 85(C), pages 156-165.
    9. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    10. Jradi, Samah & Bouzdine Chameeva, Tatiana & Aparicio, Juan, 2019. "The measurement of revenue inefficiency over time: An additive perspective," Omega, Elsevier, vol. 83(C), pages 167-180.
    11. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    12. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    13. Barbero, Javier & Zofío, José L., 2023. "The measurement of profit, profitability, cost and revenue efficiency through data envelopment analysis: A comparison of models using BenchmarkingEconomicEfficiency.jl," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    15. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    16. Li, Yongjun & Wang, Lizheng & Li, Feng, 2021. "A data-driven prediction approach for sports team performance and its application to National Basketball Association," Omega, Elsevier, vol. 98(C).
    17. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    18. Cook, Wade D. & Hababou, Moez, 2001. "Sales performance measurement in bank branches," Omega, Elsevier, vol. 29(4), pages 299-307, August.
    19. Juan Aparicio & Fernando Borras & Lidia Ortiz & Jesus T. Pastor & Fernando Vidal, 2019. "Luenberger-type indicators based on the weighted additive distance function," Annals of Operations Research, Springer, vol. 278(1), pages 195-213, July.
    20. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:12:p:8720-8735:d:42961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.