IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v4y2012i8p1806-1832d19451.html
   My bibliography  Save this article

Small Modular Reactors for Enhancing Energy Security in Developing Countries

Author

Listed:
  • Ioannis N. Kessides

    (Development Research Group, The World Bank, 1818 H Street, N.W., Washington, DC 20433, USA)

  • Vladimir Kuznetsov

    (Consultant, The World Bank, 1818 H Street, N.W., Washington, DC 20433, USA)

Abstract

In recent years, small modular reactors (SMRs) have been attracting considerable attention around the world. SMR designs incorporate innovative approaches to achieve simplicity, modularity and speed of build, passive safety features, proliferation resistance, and reduced financial risk. The incremental capacity expansion associated with SMR deployment could provide a better match (than the large-scale reactors) to the limited grid capacity of many developing countries. Because of their lower capital requirements, SMRs could also effectively address the energy needs of small developing countries with limited financial resources. Although SMRs can have substantially higher specific capital costs as compared to large-scale reactors, they may nevertheless enjoy significant economic benefits due to shorter build times, accelerated learning effects and co-siting economies, temporal and sizing flexibility of deployment, and design simplification.

Suggested Citation

  • Ioannis N. Kessides & Vladimir Kuznetsov, 2012. "Small Modular Reactors for Enhancing Energy Security in Developing Countries," Sustainability, MDPI, vol. 4(8), pages 1-27, August.
  • Handle: RePEc:gam:jsusta:v:4:y:2012:i:8:p:1806-1832:d:19451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/4/8/1806/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/4/8/1806/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roques Fabien A. & Newbery David M. & Nuttall William J., 2005. "Investment Incentives and Electricity Market Design: the British Experience," Review of Network Economics, De Gruyter, vol. 4(2), pages 1-36, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    2. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
    3. Young Jin Kim & Byung Jin Lee & Kunwoo Yi & Yoon Jae Choe & Min Chul Lee, 2020. "Numerical Study on the Effects of Relative Diameters on the Performance of Small Modular Reactors Driven by Natural Circulation," Energies, MDPI, vol. 13(22), pages 1-17, November.
    4. Erwan Hermawan & Usman Sudjadi, 2022. "Integrated Nuclear-Renewable Energy System for Industrialization in West Nusa Tenggara Province, Indonesia: Economic, Potential Site, and Policy Recommendation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 146-159, July.
    5. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    6. Black, Geoffrey A. & Aydogan, Fatih & Koerner, Cassandra L., 2019. "Economic viability of light water small modular nuclear reactors: General methodology and vendor data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 248-258.
    7. Frederik Reitsma & Peter Woods & Martin Fairclough & Yongjin Kim & Harikrishnan Tulsidas & Luis Lopez & Yanhua Zheng & Ahmed Hussein & Gerd Brinkmann & Nils Haneklaus & Anand Rao Kacham & Tumuluri Sre, 2018. "On the Sustainability and Progress of Energy Neutral Mineral Processing," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    8. Haneklaus, Nils & Schröders, Sarah & Zheng, Yanhua & Allelein, Hans-Josef, 2017. "Economic evaluation of flameless phosphate rock calcination with concentrated solar power and high temperature reactors," Energy, Elsevier, vol. 140(P1), pages 1148-1157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    2. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    3. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    4. Arango, Santiago & Larsen, Erik, 2011. "Cycles in deregulated electricity markets: Empirical evidence from two decades," Energy Policy, Elsevier, vol. 39(5), pages 2457-2466, May.
    5. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    6. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    7. Adrien de Hauteclocque & Jean-Michel Glachant, 2011. "Long-term Contracts and Competition Policy in European Energy Markets," Chapters, in: Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque (ed.), Competition, Contracts and Electricity Markets, chapter 9, Edward Elgar Publishing.
    8. Hulya Dagdeviren, 2009. "Limits To Competition And Regulation In Privatized Electricity Markets," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 80(4), pages 641-664, December.
    9. Adrien de Hauteclocque & Vincent Rious, 2009. "Reconsidering the Regulation of Merchant Transmission Investment in the Light of the Third Energy Package: The Role of Dominant Generators," RSCAS Working Papers 2009/59, European University Institute.
    10. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    11. David Newbery, 2016. "Questioning the EU Target Electricity Model – how should it be adapted to deliver the Trilemma?," Working Papers EPRG 1617, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    13. Pinho, Joana & Resende, Joana & Soares, Isabel, 2018. "Capacity investment in electricity markets under supply and demand uncertainty," Energy, Elsevier, vol. 150(C), pages 1006-1017.
    14. repec:bla:ausecr:v:41:y:2008:i:4:p:349-370 is not listed on IDEAS
    15. Simshauser, Paul & Tian, Yuan & Whish-Wilson, Patrick, 2015. "Vertical integration in energy-only electricity markets," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 35-56.
    16. Hauteclocque, Adrien de & Glachant, Jean-Michel, 2009. "Long-term energy supply contracts in European competition policy: Fuzzy not crazy," Energy Policy, Elsevier, vol. 37(12), pages 5399-5407, December.
    17. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    18. Roques, Fabien A., 2008. "Market design for generation adequacy: Healing causes rather than symptoms," Utilities Policy, Elsevier, vol. 16(3), pages 171-183, September.
    19. Klaus Gugler & Mario Liebensteiner & Adhurim Haxhimusa & Nora Schindler, 2016. "Investment under Uncertainty in Electricity Generation," Department of Economics Working Papers wuwp234, Vienna University of Economics and Business, Department of Economics.
    20. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    21. Chi-Keung Woo & Ira Horowitz & Jay Zarnikau & Jack Moore & Brendan Schneiderman & Tony Ho & Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, , vol. 37(3), pages 29-57, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:4:y:2012:i:8:p:1806-1832:d:19451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.