Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2012.10.037
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Manfred Lenzen & Lise-Lotte Pade & Jesper Munksgaard, 2004. "CO2 Multipliers in Multi-region Input-Output Models," Economic Systems Research, Taylor & Francis Journals, vol. 16(4), pages 391-412.
- Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
- Baynes, Timothy & Lenzen, Manfred & Steinberger, Julia K. & Bai, Xuemei, 2011. "Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy," Energy Policy, Elsevier, vol. 39(11), pages 7298-7309.
- Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
- Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
- Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
- Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
- Stephanie Pincetl & Mikhail Chester & Giovanni Circella & Andrew Fraser & Caroline Mini & Sinnott Murphy & Janet Reyna & Deepak Sivaraman, 2014. "Enabling Future Sustainability Transitions," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 871-882, December.
- Guangwu Chen & Thomas Wiedmann & Michalis Hadjikakou & Hazel Rowley, 2016. "City Carbon Footprint Networks," Energies, MDPI, vol. 9(8), pages 1-16, July.
- Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
- Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
- Kramers, Anna & Wangel, Josefin & Johansson, Stefan & Höjer, Mattias & Finnveden, Göran & Brandt, Nils, 2013. "Towards a comprehensive system of methodological considerations for cities' climate targets," Energy Policy, Elsevier, vol. 62(C), pages 1276-1287.
- Jukka Heinonen & Seppo Junnila, 2011. "A Carbon Consumption Comparison of Rural and Urban Lifestyles," Sustainability, MDPI, vol. 3(8), pages 1-16, August.
- Pu Lyu & Yongjie Lin & Yuanqing Wang, 2019. "The impacts of household features on commuting carbon emissions: a case study of Xi’an, China," Transportation, Springer, vol. 46(3), pages 841-857, June.
- Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
- Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
- Keirstead, James, 2013. "Benchmarking urban energy efficiency in the UK," Energy Policy, Elsevier, vol. 63(C), pages 575-587.
- Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
- Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
- Jing Tian & Hua Liao & Ce Wang, 2015.
"Spatial–temporal variations of embodied carbon emission in global trade flows: 41 economies and 35 sectors,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1125-1144, September.
- Jing Tian & Hua Liao & Ce Wang, 2014. "Spatial-Temporal Variations of Embodied Carbon Emission in Global Trade Flows: 41 Economies and 35 Sectors," CEEP-BIT Working Papers 78, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Misato Sato, 2014.
"Embodied Carbon In Trade: A Survey Of The Empirical Literature,"
Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
- Misato Sato, 2012. "Embodied carbon in trade: a survey of the empirical literature," GRI Working Papers 77, Grantham Research Institute on Climate Change and the Environment.
- Jani Laine & Juudit Ottelin & Jukka Heinonen & Seppo Junnila, 2017. "Consequential Implications of Municipal Energy System on City Carbon Footprints," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
- Wei Huang & Chengbin Deng, 2016. "A geographic approach to carbon accounting of Wisconsin," Journal of Maps, Taylor & Francis Journals, vol. 12(2), pages 324-333, March.
- Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
- Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
- Zhou, Xin & Imura, Hidefumi, 2011. "How does consumer behavior influence regional ecological footprints? An empirical analysis for Chinese regions based on the multi-region input–output model," Ecological Economics, Elsevier, vol. 71(C), pages 171-179.
- Chen, Jiandong & Fan, Wei & Li, Ding & Liu, Xin & Song, Malin, 2020. "Driving factors of global carbon footprint pressure: Based on vegetation carbon sequestration," Applied Energy, Elsevier, vol. 267(C).
- Ferguson, Thomas M. & MacLean, Heather L., 2011. "Trade-linked Canada–United States household environmental impact analysis of energy use and greenhouse gas emissions," Energy Policy, Elsevier, vol. 39(12), pages 8011-8021.
- Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis. Part 2: Simulation," Ecological Economics, Elsevier, vol. 86(C), pages 188-198.
- Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
More about this item
Keywords
City-scale greenhouse gas footprints; Urban infrastructure-based carbon footprints; Consumption-based carbon footprint; City typology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:54:y:2013:i:c:p:376-384. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.