IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2001-d1600230.html
   My bibliography  Save this article

Comparing the Use of Ant Colony Optimization and Genetic Algorithms to Organize Kitting Systems Within Green Supply Chain Management Practices

Author

Listed:
  • Onur Mesut Şenaras

    (Oyak Renault Automobile Factory, 16140 Bursa, Türkiye)

  • Şahin İnanç

    (Department of Computer Technologies, Vocational School of Keles, Bursa Uludağ University, 16059 Bursa, Türkiye)

  • Arzu Eren Şenaras

    (Department of Econometrics, Faculty of Economics and Administrative Sciences, Bursa Uludağ University, 16059 Bursa, Türkiye)

  • Burcu Öngen Bilir

    (Department of Business Administration, Faculty of Humanities and Social Sciences, Bursa Technical University, 16310 Bursa, Türkiye)

Abstract

As product diversity continues to expand in today’s market, there is an increasing demand from customers for unique and varied items. Meeting these demands necessitates the transfer of different sub-product components to the production line, even within the same manufacturing process. Lean manufacturing has addressed these challenges through the development of kitting systems that streamline the handling of diverse components. However, to ensure that these systems contribute to sustainable practices, it is crucial to design and implement them with environmental considerations in mind. The optimization of warehouse layouts and kitting preparation areas is essential for achieving sustainable and efficient logistics. To this end, we propose a comprehensive study aimed at developing the optimal layout, that is, creating warehouse layouts and kitting preparation zones that minimize waste, reduce energy consumption, and improve the flow of materials. The problem of warehouse location assignment is classified as NP-hard, and the complexity increases significantly when both storage and kitting layouts are considered simultaneously. This study aims to address this challenge by employing the genetic algorithm (GA) and Ant Colony Optimization (ACO) methods to design a system that minimizes energy consumption. Through the implementation of genetic algorithms (GAs), a 24% improvement was observed. This enhancement was achieved by simultaneously optimizing both the warehouse layout and the kitting area, demonstrating the effectiveness of integrated operational strategies. This substantial reduction not only contributes to lower operational costs but also aligns with sustainability goals, highlighting the importance of efficient material handling practices in modern logistics operations. This article provides a significant contribution to the field of sustainable logistics by addressing the vital role of kitting systems within green supply chain management practices. By aligning logistics operations with sustainability goals, this study not only offers practical insights but also advances the broader conversation around environmentally conscious supply chain practices.

Suggested Citation

  • Onur Mesut Şenaras & Şahin İnanç & Arzu Eren Şenaras & Burcu Öngen Bilir, 2025. "Comparing the Use of Ant Colony Optimization and Genetic Algorithms to Organize Kitting Systems Within Green Supply Chain Management Practices," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2001-:d:1600230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anup Kumar & Santosh Kumar Shrivastav & Avinash K. Shrivastava & Rashmi Ranjan Panigrahi & Abbas Mardani & Fausto Cavallaro, 2023. "Sustainable Supply Chain Management, Performance Measurement, and Management: A Review," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    2. Golnaz Hooshmand Pakdel & Yong He & Sina Hooshmand Pakdel, 2024. "Multi-Objective Green Closed-Loop Supply Chain Management with Bundling Strategy, Perishable Products, and Quality Deterioration," Mathematics, MDPI, vol. 12(5), pages 1-24, February.
    3. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    4. Rebeca B. Sánchez-Flores & Samantha E. Cruz-Sotelo & Sara Ojeda-Benitez & Ma. Elizabeth Ramírez-Barreto, 2020. "Sustainable Supply Chain Management—A Literature Review on Emerging Economies," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    5. Labiba Noshin Asha & Arup Dey & Nita Yodo & Lucy G. Aragon, 2022. "Optimization Approaches for Multiple Conflicting Objectives in Sustainable Green Supply Chain Management," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zhang & Wen Jun Tan & Wentong Cai & Allan N. Zhang, 2024. "Leveraging Multi-Agent Reinforcement Learning for Digital Transformation in Supply Chain Inventory Optimization," Sustainability, MDPI, vol. 16(22), pages 1-17, November.
    2. Maria A. M. Trindade & Paulo S. A. Sousa & Maria R. A. Moreira, 2021. "Defining a storage-assignment strategy for precedence-constrained order picking," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 146-160.
    3. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    4. Kovács, András, 2011. "Optimizing the storage assignment in a warehouse served by milkrun logistics," International Journal of Production Economics, Elsevier, vol. 133(1), pages 312-318, September.
    5. Zhanwei Tian & Guoqing Zhang, 2021. "Multi-echelon fulfillment warehouse rent and production allocation for online direct selling," Annals of Operations Research, Springer, vol. 304(1), pages 427-451, September.
    6. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    7. Pablo Pérez-Gosende & Josefa Mula & Manuel Díaz-Madroñero, 2020. "Overview of Dynamic Facility Layout Planning as a Sustainability Strategy," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    8. Dobromir Herzog, 2021. "Human factor aspects in information security management in the traditional IT and cloud computing models," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 93-108.
    9. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    10. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    11. Thierry Sauvage & Tony Cragg & Sarrah Chraibi & Oussama El Khalil Houssaini, 2018. "Running the Machine Faster: Acceleration, Humans and Warehousing," Post-Print hal-02905068, HAL.
    12. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    13. Jingjing Hao & Haoming Shi & Victor Shi & Chenchen Yang, 2020. "Adoption of Automatic Warehousing Systems in Logistics Firms: A Technology–Organization–Environment Framework," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    14. Najafi, Mehdi & Zolfagharinia, Hossein, 2024. "A Multi-objective integrated approach to address sustainability in a meat supply chain," Omega, Elsevier, vol. 124(C).
    15. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    16. Janka Saderova & Andrea Rosova & Marian Sofranko & Peter Kacmary, 2021. "Example of Warehouse System Design Based on the Principle of Logistics," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    18. Rafael Diaz, 2016. "Using dynamic demand information and zoning for the storage of non-uniform density stock keeping units," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2487-2498, April.
    19. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    20. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2001-:d:1600230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.