IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1391-d1586536.html
   My bibliography  Save this article

Enhancing Biodiversity and Environmental Sustainability in Intermodal Transport: A GIS-Based Multi-Criteria Evaluation Framework

Author

Listed:
  • Mladen Krstić

    (Department of Economic Sciences, University of Salento, Via Monteroni snc, 73100 Lecce, Italy
    Logistics Department, Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia
    National Biodiversity Future Center (NBFC), 90133 Palermo, Italy)

  • Snežana Tadić

    (Logistics Department, Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia)

  • Pier Paolo Miglietta

    (Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni snc, 73100 Lecce, Italy)

  • Donatella Porrini

    (Department of Economic Sciences, University of Salento, Via Monteroni snc, 73100 Lecce, Italy
    National Biodiversity Future Center (NBFC), 90133 Palermo, Italy)

Abstract

Biodiversity is essential for the health and stability of our planet, contributing to ecosystem services like pollination, nutrient cycling, and climate regulation. However, it faces significant threats from human activities, including habitat destruction and pollution. Transportation infrastructure, if not carefully managed, can fragment habitats and disrupt wildlife migration, exacerbating biodiversity loss. Thus, incorporating environmental and biodiversity considerations into transport planning is crucial for promoting long-term sustainability. Accordingly, the goal of this paper is to define a framework for evaluating and ranking intermodal transport routes based on their impact on the environment and biodiversity. The study employs a Geographic Information System (GIS)-based Multi-Criteria Decision-Making (MCDM) model, combining input from interactive GIS maps and stakeholders with a novel hybrid approach. The MCDM part of the model combines fuzzy Delphi and fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) methods for obtaining the criteria weights and the Axial Distance-based Aggregated Measurement (ADAM) method for obtaining the final ranking of the routes. This methodology application on several Trans-European Transport Network (TEN-T) routes revealed that the Hamburg/Bremerhaven–Wurzburg–Verona route had the least environmental and biodiversity impact. The study identified the Rotterdam–Milano route as the optimal choice, balancing sustainability, ecological preservation, and transport efficiency. The route minimizes ecological disruption, protects biodiversity, and aligns with European Union strategies to reduce environmental impact in infrastructure projects. The study established a framework for evaluating intermodal transport routes based on environmental and biodiversity impacts, balancing efficiency with ecological responsibility. It makes significant contributions by integrating biodiversity criteria into transport planning and introducing a novel combination of GIS and MCDM techniques for route assessment.

Suggested Citation

  • Mladen Krstić & Snežana Tadić & Pier Paolo Miglietta & Donatella Porrini, 2025. "Enhancing Biodiversity and Environmental Sustainability in Intermodal Transport: A GIS-Based Multi-Criteria Evaluation Framework," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1391-:d:1586536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tareq Abu-Aisha & Jean-François Audy & Mustapha Ouhimmou, 2024. "Toward an efficient sea-rail intermodal transportation system: a systematic literature review," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-27, December.
    2. Belton, Ian & MacDonald, Alice & Wright, George & Hamlin, Iain, 2019. "Improving the practical application of the Delphi method in group-based judgment: A six-step prescription for a well-founded and defensible process," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 72-82.
    3. Anny-del-Mar Agamez-Arias & José Moyano-Fuentes, 2017. "Intermodal transport in freight distribution: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 782-807, November.
    4. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    5. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    6. Ming-Feng Huang & Li-Pei Peng, 2023. "Extracting Evaluation Factors of Social Resilience in Water Resource Protection Areas Using the Fuzzy Delphi Method," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    7. Mladen Krstić & Giulio Paolo Agnusdei & Snežana Tadić & Milovan Kovač & Pier Paolo Miglietta, 2023. "A Novel Axial-Distance-Based Aggregated Measurement (ADAM) Method for the Evaluation of Agri-Food Circular-Economy-Based Business Models," Mathematics, MDPI, vol. 11(6), pages 1-27, March.
    8. Martin Hrušovský & Emrah Demir & Werner Jammernegg & Tom Woensel, 2018. "Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 486-516, September.
    9. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    10. Aida Kalem & Snežana Tadić & Mladen Krstić & Nermin Čabrić & Nedžad Branković, 2024. "Performance Evaluation of Railway Infrastructure Managers: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(10), pages 1-31, May.
    11. Maria Vittoria Corazza, 2024. "A Comprehensive Research Agenda for Integrating Ecological Principles into the Transportation Sector," Sustainability, MDPI, vol. 16(16), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belton, Ian & Wright, George & Sissons, Aileen & Bolger, Fergus & Crawford, Megan M. & Hamlin, Iain & Taylor Browne Lūka, Courtney & Vasilichi, Alexandrina, 2021. "Delphi with feedback of rationales: How large can a Delphi group be such that participants are not overloaded, de-motivated, or disengaged?," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Isabela Caroline de Sousa & Tiago F. A. C. Sigahi & Izabela Simon Rampasso & Gustavo Hermínio Salati Marcondes de Moraes & Walter Leal Filho & João Henrique Paulino Pires Eustachio & Rosley Anholon, 2024. "A Delphi–Fuzzy Delphi Study on SDGs 9 and 12 after COVID-19: Case Study in Brazil," Forecasting, MDPI, vol. 6(3), pages 1-18, July.
    3. Jung-Fa Tsai & Ruey-Chu Lee & Dinh-Hieu Tran & Minh-Chau Hoang & Ming-Hua Lin, 2025. "A Study on Sustainability Indicators for Energy Companies in Viet Nam," Sustainability, MDPI, vol. 17(3), pages 1-18, January.
    4. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    5. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    6. Chunjiao Shao & Haiyan Wang & Meng Yu, 2022. "Multi-Objective Optimization of Customer-Centered Intermodal Freight Routing Problem Based on the Combination of DRSA and NSGA-III," Sustainability, MDPI, vol. 14(5), pages 1-25, March.
    7. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    8. Chang, Victor & Liu, Ben S.C. & Sudharshan, D. & Xu, Qianwen Ariel, 2021. "Towards an effective negotiation modeling: Investigating transboundary disputes with cases of lower possibilities," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    9. Chun-Chu Liu & Chin-Tarn Lee & Yu-Feng Guo & Kon-Ning Chiu & Tse-Yu Wang, 2022. "The Study of Sustainable Rural Development in Taiwan—A Perspective of Causality Relationship," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    10. Menéndez-Caravaca, Eloísa & Bueno, Salvador & Gallego, M. Dolores, 2021. "Exploring the link between free and open source software and the collaborative economy: A Delphi-based scenario for the year 2025," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    11. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    12. Priom Mahmud & Sanjoy Kumar Paul & Abdullahil Azeem & Priyabrata Chowdhury, 2021. "Evaluating Supply Chain Collaboration Barriers in Small- and Medium-Sized Enterprises," Sustainability, MDPI, vol. 13(13), pages 1-28, July.
    13. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    14. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    15. Jinyi Hu, 2023. "Linguistic Multiple-Attribute Decision Making Based on Regret Theory and Minimax-DEA," Mathematics, MDPI, vol. 11(20), pages 1-14, October.
    16. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    17. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    18. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    19. Zhang, Hong & Gu, Chao-lin & Gu, Lu-wen & Zhang, Yan, 2011. "The evaluation of tourism destination competitiveness by TOPSIS & information entropy – A case in the Yangtze River Delta of China," Tourism Management, Elsevier, vol. 32(2), pages 443-451.
    20. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1391-:d:1586536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.