IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p656-d1568080.html
   My bibliography  Save this article

Integrated Renewable Energy Systems for Buildings: An Assessment of the Environmental and Socio-Economic Sustainability

Author

Listed:
  • Hossam A. Gabbar

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G0C5, Canada)

  • A. Ramadan

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G0C5, Canada
    College of Engineering (Cairo Branch), Arab Academy for Science Technology and Maritime Transport (AASTMT), Elhorria, Cairo P.O. Box 2033, Egypt)

Abstract

Developing a green energy strategy for municipalities requires creating a framework to support the local production, storage, and use of renewable energy and green hydrogen. This framework should cover essential components for small-scale applications, including energy sources, infrastructure, potential uses, policy backing, and collaborative partnerships. It is deployed as a small-scale renewable and green hydrogen unit in a municipality or building demands meticulous planning and considering multiple elements. Municipality can promote renewable energy and green hydrogen by adopting policies such as providing financial incentives like property tax reductions, grants, and subsidies for solar, wind, and hydrogen initiatives. They can also streamline approval processes for renewable energy installations, invest in hydrogen refueling stations and community energy projects, and collaborate with provinces and neighboring municipalities to develop hydrogen corridors and large-scale renewable projects. Renewable energy and clean hydrogen have significant potential to enhance sustainability in the transportation, building, and mining sectors by replacing fossil fuels. In Canada, where heating accounts for 80% of building energy use, blending hydrogen with LPG can reduce emissions. This study proposes a comprehensive approach integrating renewable energy and green hydrogen to support small-scale applications. The study examines many scenarios in a building as a case study, focusing on economic and greenhouse gas (GHG) emission impacts. The optimum scenario uses a hybrid renewable energy system to meet two distinct electrical needs, with 53% designated for lighting and 10% for equipment with annual saving CAD$ 87,026.33. The second scenario explores utilizing a hydrogen-LPG blend as fuel for thermal loads, covering 40% and 60% of the total demand, respectively. This approach reduces greenhouse gas emissions from 540 to 324 tCO 2 /year, resulting in an annual savings of CAD$ 251,406. This innovative approach demonstrates the transformative potential of renewable energy and green hydrogen in enhancing energy efficiency and sustainability across sectors, including transportation, buildings, and mining.

Suggested Citation

  • Hossam A. Gabbar & A. Ramadan, 2025. "Integrated Renewable Energy Systems for Buildings: An Assessment of the Environmental and Socio-Economic Sustainability," Sustainability, MDPI, vol. 17(2), pages 1-39, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:656-:d:1568080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dey, Subhashish & Sreenivasulu, Anduri & Veerendra, G.T.N. & Rao, K. Venkateswara & Babu, P.S.S. Anjaneya, 2022. "Renewable energy present status and future potentials in India: An overview," Innovation and Green Development, Elsevier, vol. 1(1).
    2. Ahmad, Tanveer & Zhang, Dongdong, 2021. "Renewable energy integration/techno-economic feasibility analysis, cost/benefit impact on islanded and grid-connected operations: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 83-108.
    3. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    4. Shahzad, Umer & Gupta, Mansi & Sharma, Gagan Deep & Rao, Amar & Chopra, Ritika, 2022. "Resolving energy poverty for social change: Research directions and agenda," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Al Afif, Rafat & Ayed, Yasmine & Maaitah, Omer Nawaf, 2023. "Feasibility and optimal sizing analysis of hybrid renewable energy systems: A case study of Al-Karak, Jordan," Renewable Energy, Elsevier, vol. 204(C), pages 229-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    2. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    3. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    4. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    5. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    6. Grover, Himanshu & Verma, Ashu & Bhatti, T.S., 2022. "DOBC-based frequency & voltage regulation strategy for PV-diesel hybrid microgrid during islanding conditions," Renewable Energy, Elsevier, vol. 196(C), pages 883-900.
    7. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    8. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    9. Wang, Xiong & Yang, Wanping & Ren, Xiaohang & Lu, Zudi, 2023. "Can financial inclusion affect energy poverty in China? Evidence from a spatial econometric analysis," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 255-269.
    10. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    11. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    12. Xuebin Ma & Junfeng Li & Yucheng Ren & Reaihan E & Qiugang Wang & Jie Li & Sihui Huang & Mingguo Ma, 2022. "Performance and Economic Analysis of the Multi-Energy Complementary Heating System under Different Control Strategies in Cold Regions," Energies, MDPI, vol. 15(21), pages 1-17, November.
    13. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    14. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    15. Razzaq, Asif & Yang, Xiaodong, 2023. "Digital finance and green growth in China: Appraising inclusive digital finance using web crawler technology and big data," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    16. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos & Marín-García, David, 2024. "Holistic analysis to reduce energy poverty in social dwellings in southern Spain considering envelope, systems, operational pattern, and income levels," Energy, Elsevier, vol. 288(C).
    17. Younes Sahri & Youcef Belkhier & Salah Tamalouzt & Nasim Ullah & Rabindra Nath Shaw & Md. Shahariar Chowdhury & Kuaanan Techato, 2021. "Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage," Energies, MDPI, vol. 14(18), pages 1-32, September.
    18. Diana Joița & Mirela Panait & Carmen-Elena Dobrotă & Alin Diniță & Adrian Neacșa & Laura Elly Naghi, 2023. "The European Dilemma—Energy Security or Green Transition," Energies, MDPI, vol. 16(9), pages 1-16, April.
    19. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    20. Alejandro Sallyth Guerrero Hernandez & Lúcia Valéria Ramos Arruda, 2021. "Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12842-12866, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:656-:d:1568080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.