IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p648-d1567930.html
   My bibliography  Save this article

Optimization of Microgrid Dispatching by Integrating Photovoltaic Power Generation Forecast

Author

Listed:
  • Tianrui Zhang

    (School of Mechanical Engineering, Shenyang University, Shenyang 110044, China)

  • Weibo Zhao

    (School of Mechanical Engineering, Shenyang University, Shenyang 110044, China)

  • Quanfeng He

    (School of Mechanical Engineering, Shenyang University, Shenyang 110044, China)

  • Jianan Xu

    (School of Mechanical Engineering, Shenyang University, Shenyang 110044, China)

Abstract

In order to address the impact of the uncertainty and intermittency of a photovoltaic power generation system on the smooth operation of the power system, a microgrid scheduling model incorporating photovoltaic power generation forecast is proposed in this paper. Firstly, the factors affecting the accuracy of photovoltaic power generation prediction are analyzed by classifying the photovoltaic power generation data using cluster analysis, analyzing its important features using Pearson correlation coefficients, and downscaling the high-dimensional data using PCA. And based on the theories of the sparrow search algorithm, convolutional neural network, and bidirectional long- and short-term memory network, a combined SSA-CNN-BiLSTM prediction model is established, and the attention mechanism is used to improve the prediction accuracy. Secondly, a multi-temporal dispatch optimization model of the microgrid power system, which aims at the economic optimization of the system operation cost and the minimization of the environmental cost, is constructed based on the prediction results. Further, differential evolution is introduced into the QPSO algorithm and the model is solved using this improved quantum particle swarm optimization algorithm. Finally, the feasibility of the photovoltaic power generation forecasting model and the microgrid power system dispatch optimization model, as well as the validity of the solution algorithms, are verified through real case simulation experiments. The results show that the model in this paper has high prediction accuracy. In terms of scheduling strategy, the generation method with the lowest cost is selected to obtain an effective way to interact with the main grid and realize the stable and economically optimized scheduling of the microgrid system.

Suggested Citation

  • Tianrui Zhang & Weibo Zhao & Quanfeng He & Jianan Xu, 2025. "Optimization of Microgrid Dispatching by Integrating Photovoltaic Power Generation Forecast," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:648-:d:1567930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/648/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:648-:d:1567930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.