IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i1p307-d1559641.html
   My bibliography  Save this article

Degradation and Stabilization Degree of Municipal Solid Waste: The Case of Two Landfills in China

Author

Listed:
  • Chenghao Wang

    (School of Engineering Science, Shandong Xiehe University, Jinan 250109, China
    School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Zhenying Zhang

    (School of Engineering Science, Shandong Xiehe University, Jinan 250109, China
    School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Zheheng Ma

    (School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Youwen Zhang

    (School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Hui Zhu

    (School of Engineering Science, Shandong Xiehe University, Jinan 250109, China)

  • Bingke Lu

    (School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Wenjie Chen

    (School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

The relationship between the cellulose/lignin ( C / L ) ratio and degradation rate of municipal solid waste (MSW) in landfills remains unclear. In this study, the USA National Renewable Energy Laboratory (NREL) method was employed to determine the cellulose and lignin contents of MSW at different stages of aging. A normalized degradation-stabilization index ( β ) that represents the ratio of C / L change to the initial C / L value was introduced to characterize the degradation and stabilization degree of solid waste, aiming to provide a scientific basis for the sustainable management of landfills. We made the following observations: (1) Over time, the degradation rate of organic matter in MSW slows down and stabilizes. This process is crucial for predicting the long-term environmental impact of landfills and formulating resource recovery strategies, contributing to the sustainable management of landfills. (2) The degradation rates of lignin and cellulose change from fast to slow over time, and the relationship between the C / L ratio and landfill age can be described effectively by the exp-decay formula. Understanding this relationship helps to optimize the waste decomposition process, reduce the negative environmental impact of landfills, and promote the sustainable development of landfills. (3) During the aging process of the landfill, the degree of waste degradation and stabilization initially increases rapidly and then shows a gradually decreasing trend. The relationship between the landfill stabilization degree, landfill age, and degradation rate can be represented adequately by a logistic formula. We also obtained expressions showing the correlations among landfill degradation–stabilization degree, age, and organic matter content. The findings provide valuable insights into landfill capacity, operational lifespan, and the redevelopment of landfills for MSW disposal, all of which are essential aspects for the sustainable management of landfills.

Suggested Citation

  • Chenghao Wang & Zhenying Zhang & Zheheng Ma & Youwen Zhang & Hui Zhu & Bingke Lu & Wenjie Chen, 2025. "Degradation and Stabilization Degree of Municipal Solid Waste: The Case of Two Landfills in China," Sustainability, MDPI, vol. 17(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:307-:d:1559641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    2. Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).
    3. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    4. Christos Vlachokostas & Charisios Achillas & Ioannis Agnantiaris & Alexandra V. Michailidou & Christos Pallas & Eleni Feleki & Nicolas Moussiopoulos, 2020. "Decision Support System to Implement Units of Alternative Biowaste Treatment for Producing Bioenergy and Boosting Local Bioeconomy," Energies, MDPI, vol. 13(9), pages 1-14, May.
    5. Marcin Dębowski & Marta Kisielewska & Joanna Kazimierowicz & Marcin Zieliński, 2023. "Methane Production from Confectionery Wastewater Treated in the Anaerobic Labyrinth-Flow Bioreactor," Energies, MDPI, vol. 16(1), pages 1-18, January.
    6. Shi, Yi & Vanhaverbeke, Lieselot & Xu, Jiuping, 2024. "Electric vehicle routing optimization for sustainable kitchen waste reverse logistics network using robust mixed-integer programming," Omega, Elsevier, vol. 128(C).
    7. Hasanpour Seyedlar, Niloufar & Zamir, Seyed Morteza & Nosrati, Mohsen & Rene, Eldon R., 2024. "H2S mitigation for biogas upgrading in a full-scale anaerobic digestion process by using artificial neural network modeling," Renewable Energy, Elsevier, vol. 232(C).
    8. Aijun Liu & Maurice Osewe & Huixin Wang & Hang Xiong, 2020. "Rural Residents’ Awareness of Environmental Protection and Waste Classification Behavior in Jiangsu, China: An Empirical Analysis," IJERPH, MDPI, vol. 17(23), pages 1-12, December.
    9. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).
    10. Li, Wangliang & Gupta, Rohit & Zhang, Zhikai & Cao, Lixia & Li, Yanqing & Show, Pau Loke & Gupta, Vijai Kumar & Kumar, Sunil & Lin, Kun-Yi Andrew & Varjani, Sunita & Connelly, Stephanie & You, Siming, 2023. "A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    11. Dan Cudjoe, 2023. "Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12597-12628, November.
    12. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2023. "Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    13. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Ivan T. Monteron & Ricky B. Villeta, 2024. "Municipal Solid Waste Management in San Francisco, Cebu, Philippines Using Fuzzy DEMATEL-AHP-TOPSIS," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(9), pages 3485-3509, September.
    15. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    16. Egwu, Uchenna & Onyelowe, Kennedy & Tabraiz, Shamas & Johnson, Emmanuel & Mutshow, Alexander D., 2022. "Investigation of the effect of equal and unequal feeding time intervals on process stability and methane yield during anaerobic digestion grass silage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    18. Masala, Fabiana & Groppi, Daniele & Nastasi, Benedetto & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Techno-economic analysis of biogas production and use scenarios in a small island energy system," Energy, Elsevier, vol. 258(C).
    19. Xuxi Wang & Jing Tan, 2022. "The Perception and Attitude of Farmers toward Domestic Waste Classifications: A Case Study on Wusheng County, Sichuan Province, China," IJERPH, MDPI, vol. 19(20), pages 1-14, October.
    20. Panigrahi, Sagarika & Sharma, Hari Bhakta & Tiwari, Bikash Ranjan & Krishna, Nakka Vamsi & Ghangrekar, M.M. & Dubey, Brajesh Kumar, 2021. "Insight into understanding the performance of electrochemical pretreatment on improving anaerobic biodegradability of yard waste," Renewable Energy, Elsevier, vol. 180(C), pages 1166-1178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:307-:d:1559641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.