IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i1p252-d1558458.html
   My bibliography  Save this article

The Building Energy Performance Gap in Multifamily Buildings: A Detailed Case Study Analysis of the Energy Demand and Collective Heating System

Author

Listed:
  • Stijn Van de Putte

    (Building Physics Research Group, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium)

  • Marijke Steeman

    (Building Physics Research Group, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium)

  • Arnold Janssens

    (Building Physics Research Group, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium)

Abstract

The building energy performance gap, resulting from a discrepancy between the actual energy use and theoretical calculations, remains a persistent issue in building design. This study examines the energy performance of three multifamily buildings with a collective heating system powered by gas boilers and solar collectors: two that underwent deep renovation and one newly built. An extensive on-site monitoring system provides detailed data on both the heating demand and the final energy use. To ensure comparability, the total energy use of each unit is normalised using the energy signature method. The findings show the large spread of actual energy demands due to a wide variation in user profiles. The majority of dwellings have an actual energy use that is significantly higher than calculated, which is largely attributable to space heating. The gap is further exacerbated by substantial heat losses within the building’s heating system and by limited gains from the solar collectors, indicating discrepancies between design models and operational realities. To bridge this gap, there is a need for rigorous commissioning processes, at least during the initial operation phase start-up and ideally continuously. This can ensure more effective utilisation of renewable energy sources and reduce energy inefficiencies.

Suggested Citation

  • Stijn Van de Putte & Marijke Steeman & Arnold Janssens, 2025. "The Building Energy Performance Gap in Multifamily Buildings: A Detailed Case Study Analysis of the Energy Demand and Collective Heating System," Sustainability, MDPI, vol. 17(1), pages 1-39, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:252-:d:1558458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanaika Decorte & Marijke Steeman & Nathan Van Den Bossche, 2024. "Integrating the Energy Performance Gap into Life Cycle Assessments of Building Renovations," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    2. Gupta, Rajat & Kotopouleas, Alkis, 2018. "Magnitude and extent of building fabric thermal performance gap in UK low energy housing," Applied Energy, Elsevier, vol. 222(C), pages 673-686.
    3. Balaras, Constantinos A. & Dascalaki, Elena G. & Droutsa, Kalliopi G. & Kontoyiannidis, Simon, 2016. "Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings," Applied Energy, Elsevier, vol. 164(C), pages 115-132.
    4. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    5. Moeller, Simon & Bauer, Amelie, 2022. "Energy (in)efficient comfort practices: How building retrofits influence energy behaviours in multi-apartment buildings," Energy Policy, Elsevier, vol. 168(C).
    6. Erdal Aydin & Nils Kok & Dirk Brounen, 2017. "Energy efficiency and household behavior: the rebound effect in the residential sector," RAND Journal of Economics, RAND Corporation, vol. 48(3), pages 749-782, August.
    7. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraudet, Louis-Gaëtan & Bourgeois, Cyril & Quirion, Philippe, 2021. "Policies for low-carbon and affordable home heating: A French outlook," Energy Policy, Elsevier, vol. 151(C).
    2. Bourgeois, Cyril & Giraudet, Louis-Gaëtan & Quirion, Philippe, 2021. "Lump-sum vs. energy-efficiency subsidy recycling of carbon tax revenue in the residential sector: A French assessment," Ecological Economics, Elsevier, vol. 184(C).
    3. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    4. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    5. Wei, Kai & Zhang, Zuopeng Justin & Lin, Boqiang, 2024. "Does news propaganda really affect residents’ electricity rebound effect: New evidence of non-price information," Energy, Elsevier, vol. 300(C).
    6. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    7. Tufan Özsoy, 2024. "The “energy rebound effect” within the framework of environmental sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
    8. Weber, Ines & Wolff, Anna, 2018. "Energy efficiency retrofits in the residential sector – analysing tenants’ cost burden in a German field study," Energy Policy, Elsevier, vol. 122(C), pages 680-688.
    9. Galvin, Ray & Dütschke, Elisabeth & Weiß, Julika, 2021. "A conceptual framework for understanding rebound effects with renewable electricity: A new challenge for decarbonizing the electricity sector," Renewable Energy, Elsevier, vol. 176(C), pages 423-432.
    10. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    11. Heesen, Florian & Madlener, Reinhard, 2016. "Consumer Behavior in Energy-Efficient Homes: The Limited Merits of Energy Performance Ratings as Benchmarks," FCN Working Papers 17/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    12. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    13. Cécile Hediger, 2022. "Rebound effects in residential heating: How much does an extra degree matter?," IRENE Working Papers 22-05, IRENE Institute of Economic Research.
    14. Massié, Camille & Belaïd, Fateh, 2024. "Estimating the direct rebound effect for residential electricity use in seventeen European countries: Short and long-run perspectives," Energy Economics, Elsevier, vol. 134(C).
    15. Vincent P. Roberdel & Ioulia V. Ossokina & Vladimir A. Karamychev & Theo A. Arentze, 2023. "Energy-efficient homes: effects on poverty, environment and comfort," Tinbergen Institute Discussion Papers 23-082/V, Tinbergen Institute.
    16. Hancevic, Pedro I. & Sandoval, Hector H., 2022. "Low-income energy efficiency programs and energy consumption," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    17. Galassi, Veronica & Madlener, Reinhard, 2016. "Some Like it Hot: The Role of Environmental Concern and Comfort Expectations in Energy Retrofit Decisions," FCN Working Papers 11/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
    19. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    20. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:1:p:252-:d:1558458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.