IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p218-d1557492.html
   My bibliography  Save this article

Measurement of Soil–Water Characteristic Curve of Vegetative Soil Using Polymer-Based Tensiometer for Maintaining Environmental Sustainability

Author

Listed:
  • Widjojo Adi Prakoso

    (Department of Civil Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Abdul Halim Hamdany

    (Department of Civil Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Martin Wijaya

    (Department of Civil Engineering, Universitas Katolik Parahyangan, Bandung 40141, Indonesia)

  • Rabbani Isya Ramadhan

    (Department of Civil Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Aldo Wirastana Adinegara

    (Department of Civil Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Alfrendo Satyanaga

    (Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan)

  • Glenn Adriel Adiguna

    (Department of Civil Engineering, Universitas Katolik Parahyangan, Bandung 40141, Indonesia)

  • Jong Kim

    (Department of Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan)

Abstract

The interaction between moisture content and soil suction is commonly represented by a soil–water characteristic curve (SWCC). The direct measurement of water content can be easily achieved, but it usually requires a destructive method where the soil sample needs to be oven-dried. Hence, indirect measurement is commonly employed for monitoring purposes. The limitation of this approach is the variability in water content at the wilting point, particularly for plants in different types of soil. While the moisture content at the wilting point varies greatly, suction at the wilting point is typically around 1500 kPa despite varying slightly depending on the type of plant. However, suction measurement using a normal tensiometer is limited to 100 kPa due to cavitation. Hence, it is not sufficient to cover up to the wilting point. The focus of this paper is the establishment of a polymer-based tensiometer utilizing a 15 bar ceramic disc for the measurement of high suction. The suitability of the polymer-based tensiometer in measuring the soil suction of vegetative soil is conducted by performing a soil–water characteristic curve test on vegetative soil. The SWCC produced from the polymer-based tensiometer is verified using SWCC produced from a centrifuge test. The results show that the SWCCs from both polymer-based tensiometer and centrifuge tests are comparable. Hence, suction measurement using a polymer-based tensiometer is deemed reliable. This advancement in suction measurement technology is crucial for improving irrigation practices, optimizing water use, and enhancing agricultural productivity, which in turn contributes to environmental sustainability by minimizing water waste and ensuring efficient soil management.

Suggested Citation

  • Widjojo Adi Prakoso & Abdul Halim Hamdany & Martin Wijaya & Rabbani Isya Ramadhan & Aldo Wirastana Adinegara & Alfrendo Satyanaga & Glenn Adriel Adiguna & Jong Kim, 2024. "Measurement of Soil–Water Characteristic Curve of Vegetative Soil Using Polymer-Based Tensiometer for Maintaining Environmental Sustainability," Sustainability, MDPI, vol. 17(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:218-:d:1557492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Park Williams & Craig D. Allen & Alison K. Macalady & Daniel Griffin & Connie A. Woodhouse & David M. Meko & Thomas W. Swetnam & Sara A. Rauscher & Richard Seager & Henri D. Grissino-Mayer & Jeffre, 2013. "Temperature as a potent driver of regional forest drought stress and tree mortality," Nature Climate Change, Nature, vol. 3(3), pages 292-297, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Orawan Kumdee & Md. Samim Hossain Molla & Kulwadee Kanavittaya & Jutamas Romkaew & Ed Sarobol & Sutkhet Nakasathien, 2023. "Morpho-Physiological and Biochemical Responses of Maize Hybrids under Recurrent Water Stress at Early Vegetative Stage," Agriculture, MDPI, vol. 13(9), pages 1-30, September.
    3. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    4. Mengmeng Gao & Nan Yang & Qiong Liu, 2024. "What Drives Vegetation Evolution in the Middle Reaches of the Yellow River Basin, Climate Change or Human Activities?," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
    5. Kaoru Kakinuma & Aki Yanagawa & Takehiro Sasaki & Mukund Palat Rao & Shinjiro Kanae, 2019. "Socio-ecological Interactions in a Changing Climate: A Review of the Mongolian Pastoral System," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    6. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    7. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Mauro Hermann & Heini Wernli & Matthias Röthlisberger, 2024. "Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Janusz Szmyt & Monika Dering, 2024. "Adaptive Silviculture and Climate Change—A Forced Marriage of the 21st Century?," Sustainability, MDPI, vol. 16(7), pages 1-31, March.
    11. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).
    12. Avery P. Hill & Christopher B. Field, 2021. "Forest fires and climate-induced tree range shifts in the western US," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen & Meador, Andrew Sánchez, 2017. "Climate Change Constrains the Efficiency Frontier When Managing Forests to Reduce Fire Severity and Maximize Carbon Storage," Ecological Economics, Elsevier, vol. 140(C), pages 201-214.
    14. Yu, Xingjiao & Qian, Long & Wang, Wen’e & Hu, Xiaotao & Dong, Jianhua & Pi, Yingying & Fan, Kai, 2023. "Comprehensive evaluation of terrestrial evapotranspiration from different models under extreme condition over conterminous United States," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    16. Cho, Nanghyun & Agossou, Casimir & Kim, Eunsook & Lim, Jong-Hwan & Hwang, Taehee & Kang, Sinkyu, 2024. "Evaluating key climatic and ecophysiological parameters of worldwide tree mortality with a process-based BGC model and machine learning algorithms," Ecological Modelling, Elsevier, vol. 491(C).
    17. Shi, Wenjiao & Liu, Yiting & Shi, Xiaoli, 2018. "Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970," Agricultural Systems, Elsevier, vol. 161(C), pages 16-27.
    18. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    19. M. D. Petrie & J. B. Bradford & W. K. Lauenroth & D. R. Schlaepfer & C. M. Andrews & D. M. Bell, 2020. "Non-analog increases to air, surface, and belowground temperature extreme events due to climate change," Climatic Change, Springer, vol. 163(4), pages 2233-2256, December.
    20. Stavros Sakellariou & Marios Spiliotopoulos & Nikolaos Alpanakis & Ioannis Faraslis & Pantelis Sidiropoulos & Georgios A. Tziatzios & George Karoutsos & Nicolas R. Dalezios & Nicholas Dercas, 2024. "Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems," Sustainability, MDPI, vol. 16(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:218-:d:1557492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.