IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p112-d1554375.html
   My bibliography  Save this article

Circular Economy of Plastic: Revisiting Material Requirements Planning Practices for Managing Uncertain Supply

Author

Listed:
  • Muhammad Omair

    (Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark)

  • Verena Stingl

    (Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark)

  • Brian Vejrum Wæhrens

    (Department of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark)

Abstract

Regulation and customer awareness pressurize manufacturers to use recycled plastic (RP) in the production system to reduce the negative environmental impact of plastic waste for sustainable production. Compared to virgin materials, the RP available in the market shows high variation in quality, composition, and properties, and often experiences higher variability in lead time. This renders the supply chain of RP and the production systems more vulnerable, making it difficult for material requirement planning (MRP) to decide the optimal quantity and reorder time. This paper first examines the RP supply chain and the sources of variations therein, identifies the associated uncertainties for operations management, reviews the current MRP design elements in managing supply uncertainty, and finally aligns strategies and design elements with the dimensions of the uncertainties. A set of valuable propositions is drawn for the plastic firms to manage variation from upstream suppliers and promote a high-value chain of plastic circularity. MRP practices at the operational level including safety stock, optimization techniques, and alternative bills of material are proposed to mitigate the variations in the supply chain. The work provides a conceptual foundation for the circular economy of plastic, which opens a new paradigm of future research in managing RP in the production system for sustainability.

Suggested Citation

  • Muhammad Omair & Verena Stingl & Brian Vejrum Wæhrens, 2024. "Circular Economy of Plastic: Revisiting Material Requirements Planning Practices for Managing Uncertain Supply," Sustainability, MDPI, vol. 17(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:112-:d:1554375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2018. "Ripple effect in the supply chain: an analysis and recent literature," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 414-430, January.
    2. Murthy, D.N.P. & Ma, L., 1991. "MRP with uncertainty: a review and some extensions," International Journal of Production Economics, Elsevier, vol. 25(1-3), pages 51-64.
    3. Lin, James T. & Chen, Tzu-Li & Lin, Yen-Ting, 2009. "Critical material planning for TFT-LCD production industry," International Journal of Production Economics, Elsevier, vol. 122(2), pages 639-655, December.
    4. Olumide Emmanuel Oluyisola & Swapnil Bhalla & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 311-332, January.
    5. Peter Lyon & R. John Milne & Robert Orzell & Robert Rice, 2001. "Matching Assets with Demand in Supply-Chain Management at IBM Microelectronics," Interfaces, INFORMS, vol. 31(1), pages 108-124, February.
    6. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    7. Dellaert, N. & Jeunet, J., 2005. "An alternative to safety stock policies for multi-level rolling schedule MRP problems," European Journal of Operational Research, Elsevier, vol. 163(3), pages 751-768, June.
    8. Steffen Foldager Jensen & Jesper Hemdrup Kristensen & Jonas Nygaard Uhrenholt & Maria Camila Rincón & Sofie Adamsen & Brian Vejrum Waehrens, 2022. "Unlocking Barriers to Circular Economy: An ISM-Based Approach to Contextualizing Dependencies," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    9. Muhammad Omair & Mohammed Alkahtani & Kashif Ayaz & Ghulam Hussain & Johannes Buhl, 2022. "Supply Chain Modelling of the Automobile Multi-Stage Production Considering Circular Economy by Waste Management Using Recycling and Reworking Operations," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, James T. & Chen, Tzu-Li & Lin, Yen-Ting, 2009. "Critical material planning for TFT-LCD production industry," International Journal of Production Economics, Elsevier, vol. 122(2), pages 639-655, December.
    2. Sun, Lu & Fujii, Minoru & Li, Zhaoling & Dong, Huijuan & Geng, Yong & Liu, Zhe & Fujita, Tsuyoshi & Yu, Xiaoman & Zhang, Yuepeng, 2020. "Energy-saving and carbon emission reduction effect of urban-industrial symbiosis implementation with feasibility analysis in the city," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    3. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    4. Muhammad Rahies Khan & Amir Manzoor, 2021. "Application and Impact of New Technologies in the Supply Chain Management During COVID-19 Pandemic: A Systematic Literature Review," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 277-292.
    5. Diogo Ferraz & Fernanda P. S. Falguera & Enzo B. Mariano & Dominik Hartmann, 2021. "Linking Economic Complexity, Diversification, and Industrial Policy with Sustainable Development: A Structured Literature Review," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    6. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    7. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    8. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    9. Tomasz Rokicki & Piotr Borawski & Aneta Beldycka-Borawska & Andras Szeberenyi & Luiza Ochnio & Bogdan Klepacki, 2024. "Resilience of Supply Chains in the Automotive Industry during the COVID-19 Pandemic on the Example of Polish Enterprises," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 238-252.
    10. Yi Zheng & Li Liu & Victor Shi & Wenxing Huang & Jianxiu Liao, 2022. "A Resilience Analysis of a Medical Mask Supply Chain during the COVID-19 Pandemic: A Simulation Modeling Approach," IJERPH, MDPI, vol. 19(13), pages 1-21, June.
    11. Eleonora Annunziata & Francesco Rizzi & Tiberio Daddi & Marco Frey, 2019. "Business models for interfirm energy cooperation in industrial parks: A possible taxonomy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 133-148.
    12. Tran Thu Trang & Simon R. Bush & Judith van Leeuwen, 2023. "Enhancing institutional capacity in a centralized state: The case of industrial water use efficiency in Vietnam," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 210-222, February.
    13. Broccardo, Laura & Tenucci, Andrea & Agarwal, Reeti & Alshibani, Safiya Mukhtar, 2024. "Steering digitalization and management control maturity in small and medium enterprises (SMEs)," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    14. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    15. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    16. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability, Springer, vol. 1(2), pages 507-523, September.
    17. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    18. Doryn Negesa & Wei Cong & Lei Cheng & Lei Shi, 2022. "Development of eco‐industrial parks in Ethiopia: The case of Hawassa Industrial Park," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1078-1093, June.
    19. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    20. Sisi Zhou & Kuanching Li & Lijun Xiao & Jiahong Cai & Wei Liang & Arcangelo Castiglione, 2023. "A Systematic Review of Consensus Mechanisms in Blockchain," Mathematics, MDPI, vol. 11(10), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:112-:d:1554375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.