IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3446-d1379313.html
   My bibliography  Save this article

Research on Alternative Relationship between Chinese Renewable Energy and Imported Coal for China

Author

Listed:
  • Pingkuo Liu

    (College of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China)

  • Kailing Guo

    (College of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China)

  • Jiahao Wu

    (College of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China)

Abstract

The issue of energy security in the new development paradigm featuring dual circulation has been paid attention to by all sectors, but at present, there are few results from relevant quantitative analyses. With a focus on China’s actual energy trade, this research examines the core elements of energy security in international and Chinese cycles. In this context, the “gravity model” and “Allen substitution elasticity” are optimized and expanded. An integrated assessment methodology is developed as a result of this effort. This methodology consists of an international-cycle trade gravity model and a Chinese-cycle price elasticity model. Additionally, it empirically analyzes the effects of China’s renewable energy substitution from the perspective of the “dual cycles” of energy security, and illustrates the current state of China’s energy security through the analysis of energy substitution relationship data. The results show that Chinese renewable energy does have a buffer effect on imported coal in terms of trade efficiency, scale, and behavior, as well as performance, and the energy trade price has a direct guiding significance for this buffer function, but the enhancement function of economy-driven efficiency is indirect. Furthermore, as far as the absolute price elasticity and net price elasticity are concerned, although Chinese wind power generation is a substitute for imported coal, its price elasticity also confirms that Chinese wind power generation is not a “normal commodity”. Moreover, at present, Chinese photovoltaic power generation shows the attribute of a “normal commodity”, but it has a certain degree of complementarity with imported coal, although this complementarity will weaken in the near future with the trend of changing to substitution.

Suggested Citation

  • Pingkuo Liu & Kailing Guo & Jiahao Wu, 2024. "Research on Alternative Relationship between Chinese Renewable Energy and Imported Coal for China," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3446-:d:1379313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    2. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    3. David I. Stern, 2012. "Interfuel Substitution: A Meta‐Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 307-331, April.
    4. Ma, Hengyun & Oxley, Les & Gibson, John & Kim, Bonggeun, 2008. "China's energy economy: Technical change, factor demand and interfactor/interfuel substitution," Energy Economics, Elsevier, vol. 30(5), pages 2167-2183, September.
    5. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    6. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    7. Freeman, Rebecca & Lewis, John, 2021. "Gravity model estimates of the spatial determinants of trade, migration, and trade-and-migration policies," Economics Letters, Elsevier, vol. 204(C).
    8. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    9. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    10. De Valck, Jeremy & Williams, Galina & Kuik, Swee, 2021. "Does coal mining benefit local communities in the long run? A sustainability perspective on regional Queensland, Australia," Resources Policy, Elsevier, vol. 71(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ailun & Lin, Boqiang, 2020. "Structural optimization and carbon taxation in China's commercial sector," Energy Policy, Elsevier, vol. 140(C).
    2. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    3. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    4. Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
    5. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
    6. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
    7. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    8. Feng, Shenghao & Zhang, Keyu, 2018. "Fuel-factor nesting structures in CGE models of China," Energy Economics, Elsevier, vol. 75(C), pages 274-284.
    9. Muhammad Yousaf Raza & Songlin Tang, 2022. "Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis," Energies, MDPI, vol. 15(22), pages 1-20, November.
    10. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    11. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    12. Wesseh, Presley K. & Lin, Boqiang, 2016. "Can African countries efficiently build their economies on renewable energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 161-173.
    13. Wesseh, Presley K. & Lin, Boqiang, 2017. "Is renewable energy a model for powering Eastern African countries transition to industrialization and urbanization?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 909-917.
    14. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    15. Bataille, Chris & Melton, Noel, 2017. "Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012," Energy Economics, Elsevier, vol. 64(C), pages 118-130.
    16. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    17. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
    18. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    19. Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
    20. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3446-:d:1379313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.