IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3151-d1372973.html
   My bibliography  Save this article

Developing a Data-Driven AI Model to Enhance Energy Efficiency in UK Residential Buildings

Author

Listed:
  • Hamidreza Seraj

    (Department of Civil and Environmental Engineering, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Ali Bahadori-Jahromi

    (Department of Civil and Environmental Engineering, School of Computing and Engineering, University of West London, London W5 5RF, UK)

  • Shiva Amirkhani

    (Sustainability and Climate Change, WSP, 6 Devonshire Square, London EC2M 4YE, UK)

Abstract

Residential buildings contribute 30% of the UK’s total final energy consumption. However, with less than one percent of its housing stock being replaced annually, retrofitting existing homes has significant importance in meeting energy-efficiency targets. Consequently, many physics-based and data-driven models and tools have been developed to analyse the effects of retrofit strategies from various points of view. This paper aims to develop a data-driven AI model that predicts buildings’ energy performance based on their features under various retrofit scenarios. In this context, four different machine learning models were developed based on the EPC (Energy Performance Certificate) dataset for residential buildings and standard assessment procedure (SAP) guidelines in the UK. Additionally, an interface was designed that enables users to analyse the effect of different retrofit strategies on a building’s energy performance using the developed AI models. The results of this study revealed the artificial neural network as the most accurate predictive model, with a coefficient of determination (R 2 ) of 0.82 and a mean percentage error of 11.9 percent. However, some conceptual irregularities were observed across all the models when dealing with different retrofit scenarios. All summary, such tools can be further improved to offer a potential alternative or support to physics-based models, enhancing the efficiency of retrofitting processes in buildings.

Suggested Citation

  • Hamidreza Seraj & Ali Bahadori-Jahromi & Shiva Amirkhani, 2024. "Developing a Data-Driven AI Model to Enhance Energy Efficiency in UK Residential Buildings," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3151-:d:1372973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
    2. Deb, Chirag & Dai, Zhonghao & Schlueter, Arno, 2021. "A machine learning-based framework for cost-optimal building retrofit," Applied Energy, Elsevier, vol. 294(C).
    3. Beccali, Marco & Ciulla, Giuseppina & Lo Brano, Valerio & Galatioto, Alessandra & Bonomolo, Marina, 2017. "Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy," Energy, Elsevier, vol. 137(C), pages 1201-1218.
    4. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    2. Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
    3. Ma, Dingyuan & Li, Xiaodong & Lin, Borong & Zhu, Yimin, 2023. "An intelligent retrofit decision-making model for building program planning considering tacit knowledge and multiple objectives," Energy, Elsevier, vol. 263(PB).
    4. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    5. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Mitra Pooyandeh & Insoo Sohn, 2023. "Smart Lithium-Ion Battery Monitoring in Electric Vehicles: An AI-Empowered Digital Twin Approach," Mathematics, MDPI, vol. 11(23), pages 1-37, December.
    7. Yang, Jufeng & Cai, Yingfeng & Mi, Chris, 2022. "Lithium-ion battery capacity estimation based on battery surface temperature change under constant-current charge scenario," Energy, Elsevier, vol. 241(C).
    8. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    9. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    10. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    12. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    13. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    15. Konstantinos Sofias & Zoe Kanetaki & Constantinos Stergiou & Sébastien Jacques, 2023. "Combining CAD Modeling and Simulation of Energy Performance Data for the Retrofit of Public Buildings," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    16. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    17. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    18. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    19. Shi, Mingjie & Xu, Jun & Lin, Chuanping & Mei, Xuesong, 2022. "A fast state-of-health estimation method using single linear feature for lithium-ion batteries," Energy, Elsevier, vol. 256(C).
    20. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3151-:d:1372973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.