IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2909-d1367714.html
   My bibliography  Save this article

The Impact of Blockchain on the Administrative Efficiency of Provincial Governments Based on the Data Envelopment Analysis–Tobit Model

Author

Listed:
  • Jiongan Fan

    (School of Public Administration, South China University of Technology, Guangzhou 510641, China)

  • Qingnian Wang

    (School of Public Administration, South China University of Technology, Guangzhou 510641, China
    School of International Education, South China University of Technology, Guangzhou 510006, China)

  • Yunpei Wang

    (School of Economics and Management, South China Normal University, Guangzhou 510631, China)

Abstract

Since its reform and opening up in 1978, China has maintained strong economic growth for more than four decades. For a long time, China’s economic growth has been characterized by a crude growth mode, which is mainly manifested in growth driven by large amounts of capital, energy and raw materials, and labor inputs, with little contribution from innovation and technology, which will make it difficult to promote sustainable development in the era of the knowledge economy. On the other hand, improving administrative efficiency is one of the key paths to realizing China’s sustainable development strategy. The Chinese government emphasizes high-quality development, and long-term development and stable management can be achieved only if administrative efficiency is improved on the basis of achieving sustainable development. For the purpose of transforming and developing the Chinese government to a higher standard, this study examined how blockchain affects administrative effectiveness across different provinces. The three-stage Data Envelopment Analysis (DEA) model was chosen to evaluate China’s regional administrative efficiency. It used the typical markers found in both the international and domestic literature. The input–output indicators were determined using the Delphi method, and the findings showed that while most provinces had reasonably high administrative efficiency, there were notable regional variations. This article empirically employed the Tobit model to examine the effect of blockchain on administrative efficiency based on administrative efficiency calculations. The findings showed that administrative efficiency was significantly impacted by blockchain research investment, blockchain research output, the number of blockchain policies, and the size of the population. In contrast, there was not a significant impact on administrative efficiency due to the quantity of procurements for blockchain government initiatives.

Suggested Citation

  • Jiongan Fan & Qingnian Wang & Yunpei Wang, 2024. "The Impact of Blockchain on the Administrative Efficiency of Provincial Governments Based on the Data Envelopment Analysis–Tobit Model," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2909-:d:1367714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    2. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simpson, N.C. & Tacheva, Zhasmina & Kao, Ta-Wei, 2023. "Semi-directedness: New network concepts for supply chain research," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Wen-Min Lu & Qian Long Kweh & Chung-Wei Wang, 2021. "Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry," Annals of Operations Research, Springer, vol. 296(1), pages 163-194, January.
    3. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    4. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    5. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    6. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    7. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    8. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    9. Gilligan, Daniel O., 1998. "Farm Size, Productivity, And Economic Efficiency: Accounting For Differences In Efficiency Of Farms By Size In Honduras," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20918, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    11. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    12. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    13. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    14. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.
    15. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    16. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
    17. Watkins, K. Bradley & Hristovska, Tatjana & Mazzanti, Ralph & Wilson, Charles E. Jr & Schmidt, Lance, 2014. "Measurement of Technical, Allocative, Economic, and Scale Efficiency of Rice Production in Arkansas Using Data Envelopment Analysis," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(1), pages 1-18, February.
    18. Jahangoshai Rezaee, Mustafa & Jozmaleki, Mehrdad & Valipour, Mahsa, 2018. "Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 78-93.
    19. Suhyeon Han & Shinyoung Park & Sejin An & Wonjun Choi & Mina Lee, 2023. "Research on Analyzing the Efficiency of R&D Projects for Climate Change Response Using DEA–Malmquist," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    20. Chenini Hajer & Jarboui Anis, 2018. "Analysis of the Impact of Governance on Bank Performance: Case of Commercial Tunisian Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 871-895, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2909-:d:1367714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.