IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i4p1663-d1340620.html
   My bibliography  Save this article

A Novel Semi-Spar Floating Wind Turbine Platform Applied for Intermediate Water Depth

Author

Listed:
  • Qingqing Cai

    (Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Daoyi Chen

    (Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Ni Yang

    (China Power Engineering Consulting Group Corporation Limited, Beijing 100120, China)

  • Wei Li

    (Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

Abstract

For the exploitation of offshore wind resources in areas with intermediate water depths, a novel semi-spar floating foundation is introduced to combine the superiority of the conventional semisubmersible and spar-type floater. It consists of an upper floater and a hanging weight, which are connected through 12 suspension ropes. Such a floating foundation can be wet-towed as a semisubmersible floater, which features a large waterplane moment of inertia to increase stability and reduce transportation costs. After being anchored on site, it behaves as a spar floater with moderate draft and superior hydrodynamic characteristics. The stability of the proposed semi-spar platform during wet towage is analyzed. Afterward, a fully coupled aero-hydro-servo-elastic simulation is conducted to evaluate its hydrodynamic responses in comparison with the responses of the well-acknowledged OC3-spar and OC4-semisubmersible platforms. Then, the ultimate strength of the mooring lines and suspension ropes under extreme conditions was numerically investigated, as well as the relationship between the ropes’ tension and wave direction. Eventually, a cost-effectiveness analysis is conducted in terms of power generation and steel mass. The results demonstrate that the proposed semi-spar design meets the safety criteria in transportation and exhibits a smaller response in surge and pitch motions. In addition, the ultimate strength of mooring lines and suspension ropes satisfies the safety requirements, and simulation reveals that the lateral suspension ropes parallel to the propagation direction are sensitive to the environmental conditions of winds and waves. This study confirms that the newly proposed floating wind turbine exhibits excellent hydrodynamic and power generation performance, which is of great significance for the sustainability of the energy and electricity industry.

Suggested Citation

  • Qingqing Cai & Daoyi Chen & Ni Yang & Wei Li, 2024. "A Novel Semi-Spar Floating Wind Turbine Platform Applied for Intermediate Water Depth," Sustainability, MDPI, vol. 16(4), pages 1-25, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1663-:d:1340620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/4/1663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/4/1663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Borg & Morten Walkusch Jensen & Scott Urquhart & Morten Thøtt Andersen & Jonas Bjerg Thomsen & Henrik Stiesdal, 2020. "Technical Definition of the TetraSpar Demonstrator Floating Wind Turbine Foundation," Energies, MDPI, vol. 13(18), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Russo & Pasquale Contestabile & Andrea Bardazzi & Elisa Leone & Gregorio Iglesias & Giuseppe R. Tomasicchio & Diego Vicinanza, 2021. "Dynamic Loads and Response of a Spar Buoy Wind Turbine with Pitch-Controlled Rotating Blades: An Experimental Study," Energies, MDPI, vol. 14(12), pages 1-21, June.
    2. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    3. Jonas Bjerg Thomsen & Roger Bergua & Jason Jonkman & Amy Robertson & Nicole Mendoza & Cameron Brown & Christos Galinos & Henrik Stiesdal, 2021. "Modeling the TetraSpar Floating Offshore Wind Turbine Foundation as a Flexible Structure in OrcaFlex and OpenFAST," Energies, MDPI, vol. 14(23), pages 1-14, November.
    4. Charalampos Baniotopoulos, 2022. "Advances in Floating Wind Energy Converters," Energies, MDPI, vol. 15(15), pages 1-3, August.
    5. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Victor Benifla & Frank Adam, 2022. "Development of a Genetic Algorithm Code for the Design of Cylindrical Buoyancy Bodies for Floating Offshore Wind Turbine Substructures," Energies, MDPI, vol. 15(3), pages 1-24, February.
    7. Keflemariam, Yisehak A. & Lee, Sang, 2023. "Control and dynamic analysis of a 10 MW floating wind turbine on a TetraSpar multi-body platform," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:4:p:1663-:d:1340620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.