IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4911-d415926.html
   My bibliography  Save this article

Technical Definition of the TetraSpar Demonstrator Floating Wind Turbine Foundation

Author

Listed:
  • Michael Borg

    (Stiesdal Offshore Technologies A/S; Nørrevoldgade 45, 5000 Odense C, Denmark)

  • Morten Walkusch Jensen

    (Stiesdal Offshore Technologies A/S; Nørrevoldgade 45, 5000 Odense C, Denmark)

  • Scott Urquhart

    (Stiesdal Offshore Technologies A/S; Nørrevoldgade 45, 5000 Odense C, Denmark)

  • Morten Thøtt Andersen

    (Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Ø, Denmark)

  • Jonas Bjerg Thomsen

    (Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg Ø, Denmark)

  • Henrik Stiesdal

    (Stiesdal Offshore Technologies A/S; Nørrevoldgade 45, 5000 Odense C, Denmark)

Abstract

With the deployment of the TetraSpar demonstrator, a significant cost-reduction is realized in the field of offshore floating wind turbines. The TetraSpar floating wind turbine foundation brings a milestone that emphasizes on a modular and fully industrialized foundation that consists of main components already widely available in the current wind energy supply chain. In an effort to provide an open approach to the development of the concept, this paper aims at giving a description of the design in order to enable an educated discussion of different design philosophies and their influence on material usage and production times. The description of the different subcomponents of the system should allow any entity to build a model for comparison and/or benchmarking any of their own findings against this concept. It is the authors’ expectation that this open approach to technological discussion is paramount to obtaining continued cost-reduction in the area of floating offshore wind—for this concept and others.

Suggested Citation

  • Michael Borg & Morten Walkusch Jensen & Scott Urquhart & Morten Thøtt Andersen & Jonas Bjerg Thomsen & Henrik Stiesdal, 2020. "Technical Definition of the TetraSpar Demonstrator Floating Wind Turbine Foundation," Energies, MDPI, vol. 13(18), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4911-:d:415926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4911/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Bjerg Thomsen & Roger Bergua & Jason Jonkman & Amy Robertson & Nicole Mendoza & Cameron Brown & Christos Galinos & Henrik Stiesdal, 2021. "Modeling the TetraSpar Floating Offshore Wind Turbine Foundation as a Flexible Structure in OrcaFlex and OpenFAST," Energies, MDPI, vol. 14(23), pages 1-14, November.
    2. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    3. Charalampos Baniotopoulos, 2022. "Advances in Floating Wind Energy Converters," Energies, MDPI, vol. 15(15), pages 1-3, August.
    4. Qingqing Cai & Daoyi Chen & Ni Yang & Wei Li, 2024. "A Novel Semi-Spar Floating Wind Turbine Platform Applied for Intermediate Water Depth," Sustainability, MDPI, vol. 16(4), pages 1-25, February.
    5. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    6. Keflemariam, Yisehak A. & Lee, Sang, 2023. "Control and dynamic analysis of a 10 MW floating wind turbine on a TetraSpar multi-body platform," Renewable Energy, Elsevier, vol. 217(C).
    7. Sara Russo & Pasquale Contestabile & Andrea Bardazzi & Elisa Leone & Gregorio Iglesias & Giuseppe R. Tomasicchio & Diego Vicinanza, 2021. "Dynamic Loads and Response of a Spar Buoy Wind Turbine with Pitch-Controlled Rotating Blades: An Experimental Study," Energies, MDPI, vol. 14(12), pages 1-21, June.
    8. Victor Benifla & Frank Adam, 2022. "Development of a Genetic Algorithm Code for the Design of Cylindrical Buoyancy Bodies for Floating Offshore Wind Turbine Substructures," Energies, MDPI, vol. 15(3), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4911-:d:415926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.